首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

3.
Fiddler crabs are key bioturbators on tidal flats. During their intense bioturbation process, they manipulate large amounts of sediment, altering the physical state of existing materials. We investigated whether different types of sediment bioturbation produced by fiddler crabs modulate meiofaunal assemblages and microphytobenthic content. We hypothesized that sedimentary structures produced by burrowing (the burrow itself and the excavation pellets) and feeding (feeding pellets) generate different microenvironments compared with areas without apparent signs of fiddler crab disturbance, affecting both meiofauna and microphytobenthos, independent of the sampling period. Our results indicate that the engineering effects of burrow construction and maintenance and the engineering effects of fiddler crab foraging modulate meiofaunal assemblages in different ways. Overall, meiofauna from burrows and excavation pellets was more abundant and diverse than at control sites, whereas feeding pellets contained poor meiofaunal assemblages. By contrast, only foraging effects were detected on microphytobenthos; independent of the sampling period, Chl a and phaeopigment content were higher in the feeding pellets, but similar among burrows, excavation pellets and control sites. The present study demonstrates that the different engineering effects of fiddler crabs are an important source of habitat heterogeneity and a structuring agent of meiofaunal assemblages on subtropical tidal flats.  相似文献   

4.
Summary Field experiments withMercenaria mercenaria in a relatively high-energy environment demonstrated that clams on unvegetated sand flats failed to grow during autumn while those within seagrass beds grew substantially. Clam growth rates at the seagrass margin that first receives the faster-flowing, flood-tidal currents were about 25% less than at the opposite edge. In a second experiment, pruning, which reduced average blade length by 50–75%, was shown to enhance near-bottom current velocities and to reduce shell growth ofMercenaria during summer by about 50%. As in the first experiment, clams in the unvegetated sand flats exhibited no net growth. Clam mortality, caused mostly by predatory crabs and whelks, was much higher on sand flats than in seagrass beds and intermediate in clipped seagrass. Although consistent with some previous reports, these growth results are still surprising given that they contradict the generalization that suspension feeders grow faster under more rapid current regimes.Three types of indirect interactions might explain the observed effect of seagrass on growth of buried clams: (1) altering food supply; (2) changing the intensity of biological disturbance on feeding clams; and/or (3) affecting the physical stability of the sediments. Previous research on this question has focused almost exclusively on processes that alter food supply rates. In this study, food concentrations, as indicated by suspended chla, were 30% higher inside than outside one seagrass bed, whereas chla concentrations in two other beds were not different from those on adjacent sand flats. This result is sufficient to show that more intense food depletion was not induced by the reduction in flow velocities under the seagrass canopy. Nevertheless, the possible small difference in food concentrations between vegetated and unvegetated bottom seems insufficient to explain the absence of growth of sand-flat clams, especially given the virtual lack of food limitation among suspension feeders in this system. Two data sets demonstrated that the effects of biological disturbance agents cannot be ignored. An outdoor laboratory experiment showed that even in the absence of physical contact between predator and prey the presence of a whelk reduces the amount of time spent feeding byMercenaria. This result suggests that sand flats, where predation rates are higher, may be sites of lower clam growth than seagrass beds because of greater consumer interference with clam feeding. Furthermore, clam siphons are proportionately larger inside seagrass than on sand flats, implying that siphon nipping may not be as intense inside seagrass. This process, too, would reduce net growth of sand-flat clams. Finally, no explicit test was conducted of the hypothesis that enhanced sediment transport in the absence of flow baffling and root binding by seagrass inhibits net growth of clams on high-energy sand flats. Nevertheless, this is a reasonable explanation for the pattern of enhanced growth of seagrass clams, and could serve to explain the otherwise unexplained pattern of lower clam growth at the edge of the seagrass bed that experiences the faster flood-tidal current velocities. Each broad process, changing fluid dynamics, altering consumer access, and varying sediment stability, represents a mechanism whereby habitat structure, provided by the dominant plant, has an important indirect influence on the functional value of the habitat for resident animals.  相似文献   

5.
The functional role of burrowing bivalves in freshwater ecosystems   总被引:13,自引:0,他引:13  
1. Freshwater systems are losing biodiversity at a rapid rate, yet we know little about the functional role of most of this biodiversity. The ecosystem roles of freshwater burrowing bivalves have been particularly understudied. Here we summarize what is known about the functional role of burrowing bivalves in the orders Unionoida and Veneroida in lakes and streams globally. 2. Bivalves filter phytoplankton, bacteria and particulate organic matter from the water column. Corbicula and sphaeriids also remove organic matter from the sediment by deposit feeding, as may some unionids. Filtration rate varies with bivalve species and size, temperature, particle size and concentration, and flow regime. 3. Bivalves affect nutrient dynamics in freshwater systems, through excretion as well as biodeposition of faeces and pseudofaeces. Excretion rates are both size and species dependent, are influenced by reproductive stage, and vary greatly with temperature and food availability. 4. Bioturbation of sediments through bivalve movements increases sediment water and oxygen content and releases nutrients from the sediment to the water column. The physical presence of bivalve shells creates habitat for epiphytic and epizoic organisms, and stabilizes sediment and provides refugia for benthic fauna. Biodeposition of faeces and pseudofaeces can alter the composition of benthic communities. 5. There is conflicting evidence concerning the role of resource limitation in structuring bivalve communities. Control by bivalves of primary production is most likely when their biomass is large relative to the water volume and where hydrologic residence time is long. Future studies should consider exactly what bivalves feed upon, whether feeding varies seasonally and with habitat, and whether significant overlap in diet occurs. In particular, we need a clearer picture of the importance of suspension versus deposit feeding and the potential advantages and tradeoffs between these two feeding modes. 6. In North America, native burrowing bivalves (Unionidae) are declining at a catastrophic rate. This significant loss of benthic biomass, coupled with the invasion of an exotic burrowing bivalve (Corbicula), may result in large alterations of ecosystem processes and functions.  相似文献   

6.
Macoma balthica (L.) is a common clam of the estuarine seafloor, belonging to an important group of invertebrates possessing the capacity to choose between the two fundamental modes of feeding available, using its siphon to inhale either suspended food particles from the water or food particles deposited on the sediment surface. Field experiments demonstrate that intraspecific competition, effects of other competing benthic invertebrates, and complex interactions between competition and partial predation (siphon cropping by fishes) modify the foraging behavior of Macoma. When protected by caging from siphon nipping by fishes, Macoma demonstrated greater siphon regeneration at lower density, indicating the importance of competition for limited resources. In the absence of siphon croppers, these same clams also exhibited more deposit feeding at the lower density either because of improved ability to deposit-feed with longer siphons or because deposited foods become more rapidly depleted than suspended foods on local spatial scales. Addition of siphon-nipping fishes caused greater reductions in siphon size of clams at lower density, presumably because the intensity of nipping per clam was greater where clam targets were fewer and because deposit feeding, which was more intense at lower densities, confers a greater risk of cropping from greater siphon extension and activity than characterize suspension feeding. Deposit feeding by Macoma was reduced in the presence of siphon croppers at both high and low density of clams, but the intensity of deposit-feeding activity at low density was substantially higher than predicted by additive effects of clam density and cropping. This suggests operation of a balancing strategy in Macoma whereby it is accepting greater risks of partial predation when rewards of greater food harvest are larger. The surprising failure to adopt a risk-averse stratery may be explained by the non-lethal nature of partial predation, which renders siphon loss an energetic penalty replacable through regeneration. The presence of a bed of suspension-feeding Rangia cuneata also altered foraging behavior of Macoma by inducing a switch to more intense deposit feeding, in response either to the documented near-bottom depletion of suspended foods or to likely enhanced biodeposition from feces and pseudofeces. The induction of greater deposit feeding by the presence of this competing suspension feeder led to greater siphon losses during exposure to croppers because Macoma was practicing more risky feeding behavior. This enhanced loss of siphon tissues to croppers in the presence of the suspension-feeding Rangia induced an interaction between the effects of siphon croppers and Rangia, such that Macoma exhibited a larger switch away from deposit feeding in the presence of siphon croppers when Rangia were also present. Clearly, the foraging decisions made by individuals can only be understood in a broad holistic context of population, community, and ecosystem processes.  相似文献   

7.
This study analyses the spatial distribution of burrowing by the soldier crab Mictyris longicarpus (Mictyridae) in relation to the topography of intertidal sandflats. Four different locations were sampled in Port Jackson and Botany Bay (Sydney, New South Wales, Australia). In each location, abundances of crabs and the proportion of juvenile crabs varied among sites 50 m2 and tens of metres apart, but not between high- and lowshore levels, nor among shores. Topographic formations, referred to as humps and depressions, were common on the flats and were of the same order of size and spacing as the sites, which showed variation in numbers/sizes of crabs. Manipulative experiments were done in one of the locations to distinguish between the hypotheses that the spatial distribution of the crabs varied according to (1) topography, or (2) the composition of sediment in the different topographic features. In the first experiment, small plots (0.09 m2 and 20 cm deep) of sediment were transplanted between humps and depressions, including appropriate controls for disturbance and translocation. The numbers and sizes of crabs colonizing the experimental plots were then measured. Differences in abundance among plots were found higher on the shore. Therefore, the experiment was repeated at highshore levels with increased replication. There were more crabs in depressions than in humps. The proportion of juveniles varied according to the type of sediment, but only in depressions. Heterogeneity and sediment were, therefore, important for explaining some of the spatial variability of the abundances of the crabs.  相似文献   

8.
The European eel (Anguilla anguilla) is a fascinating species, exhibiting a complex life cycle. The species is, however, listed as critically endangered on the IUCN Red List due to an amalgam of factors, including habitat loss. This study investigated the burrowing behaviour and substrate preference of glass, elver and yellow stages of A. anguilla. Preference was determined by introducing eels in aquaria with different substrates and evaluating the chosen substrate for burrowing. In addition, burrowing was recorded using a camera in all substrate types and analysed for kinematics. The experiments showed that all of these life stages sought refuge in the sediments with particle sizes ranging from sand to coarse gravel. Starting from a resting position, they shook their head horizontally in combination with rapid body undulations until half of their body was within the substrate. High-speed X-ray videography revealed that once partly in the sediment, eels used only horizontal head sweeps to penetrate further, without the use of their tail. Of the substrates tested, burrowing performance was highest in fine gravel (diameter 1–2 mm; lower burrowing duration, less body movements and/or lower frequency of movements), and all eels readily selected this substrate for burrowing. However, glass eels and elvers were able to use coarse gravel (diameter >8 mm) because their smaller size allowed manoeuvring through the spaces between the grains. Further, burrowing performance increased with body size: glass eels required more body undulations compared to yellow eels. Interestingly, the urge to hide within the sediment was highest for glass eels and elvers. Documentation of substrate preference and burrowing behaviour of A. anguilla provides new information about their potential habitat use. Considering that habitat alterations and deteriorations are partly responsible for the decline of the eel, this information can contribute to the development of more effective conservation measures.  相似文献   

9.
Macoma balthica (L.), an abundant clam, ubiquitous in temperate estuaries across the North Atlantic, is known to practice both alternative basic modes of feeding available to seafloor invertebrates. It either holds its feeding organ, the siphon, at a fixed position just above the sediment surface to filter out food particles suspended in the overlying water or else extends and moves its siphon around to vacuum up deposited food particles on the sediment surface. Previous laboratory experiments have established an understanding of the role of current flow in dictating the choice of whether suspension or deposit feeding will be used by marine invertebrates with the facultative flexibility to choose. Faster flows imply greater fluxes of suspended particles so that the energetic rewards of suspension feeding are enhanced. Slower flows imply reduced renewal rates of suspended foods in the bottom boundary layers and enhanced deposition of food particles on the seafloor so that a switch to deposit feeding is favored. Like early optimal foraging theory, this understanding is based on energetic considerations alone without incorporation of broader implications of how population interactions such as predation and competition influence individual foraging behavior. Feeding behavior of Macoma balthica is influenced in the Neuse River estuary by both hydrodynamics and siphon-cropping by juvenile demersal fishes. Under conditions of identical concentrations of suspended particulates in the water column and organic contents of surface sediments, Macoma exhibited much higher levels of deposit feeding where currents were slower. In addition, exclosure and fish inclosure experiments demonstrated that juvenile demersal fishes influence feeding behavior of Macoma by cropping exposed siphons and inducing reduction in deposit-feeding activity. Effects of croppers were substantial in early to midsummer, when juvenile fish abundances were greatest in trawl samples from this estuarine nursery and before the growing fish exhibited ontogenetic changes in diet away from early concentration on bivalve siphons. Field experiments in which siphon-cropping fish were caged at varying distances off the bottom failed to detect any effective behavioral avoidance by Macoma of cropping in response to proximity of fish. One might have hypothesized that under high risk of cropping, Macoma would switch to suspension feeding and away from deposit feeding, the feeding method entailing more risk of losses to croppers because of greater siphon activity and greater extension of siphons on the sediment surface. Consequently, partial predation by siphon-cropping fishes greatly reduces deposit-feeding activity by Macoma balthica during summer as an apparent direct effect of disfigurement and reduction of siphons, the organ required for efficient deposit feeding. Information on current flows alone would not suffice to predict feeding behavior of this marine invertebrate: the influence of partial predation must also be included.  相似文献   

10.
Chironomids are the most widely distributed group of insect larvae in freshwater environments. They are frequently the dominant primary consumers and show competitive interactions due to their requirements for foraging space in suitable substrates. In order to investigate the factors involved in substrate selection a simple choice chamber has been constructed that enables larvae of Chironomus ripariusMeigen (Diptera, Chironomidae) to select wells, in which they can establish tubes, according to a number of chemical and physical parameters. The statistical probabilities of them aggregating randomly in this way were calculated for a variety of occupancies. The larvae developed distinct patterns of non-random aggregation in the wells. Subsequent experiments showed that the presence of food at sites of burrowing affected settling but physical irregularities were necessary in order to facilitate burrowing and establish random patterns. Once the animals had selected their habitat the rate of feeding on the sediment was relatively constant with a gut-clearance time of about 12 h although starving the animals before or after feeding affected the rate of passage of sediment through the anterior of the gut.  相似文献   

11.
Muddy sediments are elastic solids through which morphologically diverse animals extend burrows by fracture. Muddy sediments inhabited by burrowing infauna vary considerably in mechanical properties, however, and at high enough porosities, muds can be fluidized. In this study, we examined burrowing behaviors and mechanisms of burrow extension for three morphologically diverse polychaete species inhabiting soft muddy sediments. Worms burrowed in gelatin, a transparent analog for muddy sediments, and in natural sediments in a novel viewing box enabling visualization of behaviors and sediment responses. Individuals of Scalibregma inflatum and Sternaspis scutata can extend burrows by fracture, but both also extended burrows by plastic deformation and by combinations of fracture and plastic deformation. Mechanical responses of sediments corresponded to different burrowing behaviors in Scalibregma; direct peristalsis was used to extend burrows by fracture or a combination of plastic deformation and fracture, whereas a retrograde expansive peristaltic wave extended burrows by plastic deformation. Burrowing speeds differed between behaviors and sediment mechanical responses, with slower burrowing associated with plastic deformation. Sternaspis exhibited less variability in behavior and burrowing speed but did extend burrows by different mechanisms consistent with observations of Scalibregma. Individuals of Ophelina acuminata did not extend burrows by fracture; rather individuals plastically deformed sediments similarly to individuals of the related Armandia brevis. Our results extend the range of natural sediments in which burrowing by fracture has been observed, but the dependence of burrow extension mechanism on species, burrowing behavior, and burrowing speed highlights the need for better understanding of mechanical responses of sediments to burrowers.  相似文献   

12.
Thalassinidean crustacean remains ( Callianassa ) are recorded from lower Miocene burrow networks belonging to the ichnogenus Thalassinoides . They were produced at mid bathyal depths of 1000–3000 m. Mid to lower bathyal basinal sediments and inferred outer neritic to upper bathyal submarine canyon sediments contain sparse ichnocoenoses composed entirely of feeding and dwelling structures, produced by burrowing polychaetes, echinoids and possibly sipunculoids and also by bivalves escaping burial during rapid sedimentation. These two ichnocoenoses are similar to those of proximal turbidite sequences, and this is considered a response to similar rates of sedimentation, water agitation and coarseness of sediment rather than a similarity in depth. An outer neritic to upper bathyal canyon wall ichnocoenosis was developed in semi-consolidated lutites and arenites by burrowing polychaetes, decapod Crustacea (shrimps and crabs) and possibly amphipods and other organisms. Inclined, but randomly oriented Rhizocorallium occur in the canyon wall, and their presence at these depths is explained by inferred abnormally high water turbulence and abundant suspended food matter as well as a favourable semi-consolidated lutite substrate.  相似文献   

13.
The burrowing crab Chasmagnathus granulatus is an important bioturbator that generates dense burrow assemblages (crab beds) characteristic of intertidal habitats of SW Atlantic estuaries. Crab bioturbation affects the topography and hydrodynamics of the sediment, increasing sediment water and organic matter content, decreasing sediment hardness and changing the grain size frequency distribution. In this study, we found that burrowing crabs can decrease the impact of predation by shorebirds on polychaetes. The polychaete Laeonereis acuta Treadwell has U-shaped burrows outside crab beds, which are associated with surface deposit-feeding while their burrows are mainly I-shaped inside which is associated with subsurface deposit feeding behavior. This pattern is likely the result of larger vertical sediment mixing inside crab beds due to crab burrowing. As a result of their feeding strategy, polychaetes appear on the surface more often outside crab beds, which increases their availability for shorebirds. In addition, shorebird species differentially use crab beds. The White-rumped Sandpiper, Calidris fuscicollis Vieillot, preferentially forage outside crab beds, meanwhile the Two-banded Plover Charadrius falklandicus Latham forage more frequently inside crab beds. However, experiments excluding shorebirds inside and outside crab beds showed negative effects of shorebirds only outside crab beds. Thus, our results show that the SW Atlantic burrowing crab C. granulatus affects the strength of the predator–prey interaction between shorebirds and polychaetes.  相似文献   

14.
Hughes AR  Grabowski JH 《Oecologia》2006,149(2):256-264
Despite increasing evidence that habitat structure can shape predator–prey interactions, few studies have examined the impact of habitat context on interactions among multiple predators and the consequences for combined foraging rates. We investigated the individual and combined effects of stone crabs (Menippe mercenaria) and knobbed whelks (Busycon carica) when foraging on two common bivalves, the hard clam (Mercenaria mercenaria) and the ribbed mussel (Geukensia demissa) in oyster reef and sand flat habitats. Because these species co-occur across these and other estuarine habitats of varying physical complexity, this system is ideal for examining how habitat context influences foraging rates and the generality of predator interactions. Consistent with results from previous studies, consumption rates of each predator in isolation from the other were higher in the sand flat than in the more structurally complex oyster reef habitat. However, consumption by the two predators when combined surprisingly did not differ between the two habitats. This counterintuitive result probably stems from the influence of habitat structure on predator–predator interactions. In the sand-flat habitat, whelks significantly reduced their consumption of their less preferred prey when crabs were present. However, the structurally more complex oyster reef habitat appeared to reduce interference interactions among predators, such that consumption rates when the predators co-occurred did not differ from predation rates when alone. In addition, both habitat context and predator–predator interactions increased resource partitioning by strengthening predator dietary selectivity. Thus, an understanding of how habitat characteristics such as physical complexity influence interactions among predators may be critical to predicting the effects of modifying predator populations on their shared prey.  相似文献   

15.
Erosion and transport of juvenile benthic invertebrates, including bivalves, have the potential to alter patterns of distribution and abundance during the early post-settlement period. However, the factors influencing rates of postlarval dispersal are not well understood. Both hydrodynamics and behaviour (e.g. burrowing) are likely to play a role in determining patterns of transport of juvenile bivalves. To determine the relationship between sediment transport and bivalve dispersal, experiments were conducted in a racetrack flume to examine the effect of grain size, flow, and clam size on rates of erosion of two species of juvenile clams (Mya arenaria and Mercenaria mercenaria). Results of the experiments were compared to predictions of erosion thresholds based on the physical characteristics of the sediment and clams. Erosion of Mercenaria was greater than Mya, the opposite of predictions based on Mercenaria's greater density, indicating the importance of burrowing behaviour. In most cases, erosion also was greater in the finer sand, in contrast to the predicted similarity of erosion thresholds of the two sediments. However, clam erosion did increase with increasing shear velocity and decrease with clam size, as expected. The results of this study indicate that both hydrodynamics and behaviour play roles in the transport of these two species of juvenile bivalves and that their vulnerability to passive erosion cannot be predicted solely from knowledge of sediment transport.  相似文献   

16.
Interaction and habitat partition between the soldier crab Mictyris brevidactylus (prey) and the fiddler crab Uca perplexa (predator) were examined at a sandy tidal flat on Okinawa Island, Japan, where they co-occur. Both live in dense colonies. When the soldier crabs were released in the densely populated habitat of the fiddler crab, male fiddler crabs, which maintain permanent burrows in hard sediment, preyed on small soldier crabs and repelled large ones. Thus, the fiddler crabs prevented the soldier crabs from trespassing. It was also observed whether soldier crabs burrowed successfully when they were released 1) where soldier crab burrows just under the sand were abundant, 2) in a transition area between the two species, 3) an area without either species, and 4) where artificial tunnels simulated soldier crabs' feeding tunnels were made by piling up sand in the area lacking either species. In contrast to the non-habitat area, many soldier crabs burrowed in the sediment near the release point in the tunnel, transition and artificial tunnel areas. This indicates that the feeding tunnels on the surface attracted other crabs after emergence. When the large male fiddler crabs were transplanted into the artificial burrows made in soft sediment of the soldier crab habitat, all left their artificial burrows by 2 days. In the fiddler crab habitat, however, about one-third of the transplanted male fiddler crabs remained in the artificial burrows after 3 days. The soldier crabs regularly disturb the sediment by the up and down movement of their burrow (small air chamber) between tides. This disturbance probably prevents the fiddler crab from making and occupying permanent burrows. Thus, it appears that these crabs divide the sandy intertidal zone by sediment hardness and exclude each other by different means.  相似文献   

17.
Behavioural interactions between ecosystem engineers may strongly influence community structure. We tested whether an invasive ecosystem engineer, the alga Caulerpa taxifolia , indirectly facilitated community diversity by modifying the behaviour of a native ecosystem engineer, the clam Anadara trapezia , in southeastern Australia . In this study, clams in Caulerpa -invaded sediments partially unburied themselves, extending >30% of their shell surface above the sediment, providing rare, hard substrata for colonization. Consequently, clams in Caulerpa had significantly higher diversity and abundance of epibiota compared with clams in unvegetated sediments. To isolate the role of clam burial depth from direct habitat influences or differential predation by habitat, we manipulated clam burial depth, predator exposure and habitat ( Caulerpa or unvegetated) in an orthogonal experiment. Burial depth overwhelmingly influenced epibiont species richness and abundance, resulting in a behaviourally mediated facilitation cascade. That Caulerpa controls epibiont communities by altering Anadara burial depths illustrates that even subtle behavioural responses of one ecosystem engineer to another can drive extensive community-wide facilitation.  相似文献   

18.
高霄龙  李莉  邱兆星  郑永允  李琪 《生态学报》2015,35(11):3562-3568
敌害生物的捕食在控制海洋底栖生物群落的丰度和组成中起着关键性的作用。以红螯相手蟹(Sesarma haematocheir)和毛蚶(Scapharca subcrenata)为试验对象,研究了红螯相手蟹的密度、规格、性别,以及毛蚶的密度、规格、海水温度和底质条件对毛蚶苗种存活的影响。结果表明,蟹表现出了第二种类型的功能反应,高密度底播毛蚶苗种可以显著提高成活率;当毛蚶苗种壳长达到20mm以上时,蟹的摄食速率显著下降;随着蟹个体的增大,其摄食速率显著增加,毛蚶的存活率下降;当蟹的密度逐渐增加的时候,同种个体之间的干扰竞争显著提高了毛蚶存活率;雄蟹凭借强有力的螯导致了更多毛蚶苗种的死亡;海水温度较低的春季和秋季底播毛蚶苗种可以显著提高成活率;底质条件的复杂性和异质性为毛蚶的存活提供了"庇护空间",从而减少了敌害生物捕食所带来的损失。  相似文献   

19.
Experiments were conducted to determine whether locally abundant crab species prefer co-occurring littleneck clams, Protothaca staminea (Conrad, 1837) and Tapes philippinarum (A. Adams and Reeve, 1850), relative to a recently introduced species, the varnish clam, Nuttallia obscurata, (Reeve, 1857). Prey preference, handling time, pick-up success, profitability and consumption rates were investigated for two crab species, Dungeness crab, Cancer magister (Dana, 1852) and red rock crab, Cancer productus (Randall, 1839) crabs. Both crab species preferred varnish clams over the native species. This may be attributable to the lower handling time, higher pick-up success and increased profitability of consuming varnish clams. Handling time appeared to be a factor not only in species preference, but also in the degree of preference, with shorter handling times corresponding to stronger preference values. Both native and introduced bivalves burrow into the substratum, with the varnish clam burrowing deepest. When feeding on clams in limited substratum both crab species preferred the varnish clam. In the unlimited substratum trials Dungeness crabs preferred varnish clams (although to a lesser degree) while red rock crabs preferred littleneck clams. This was likely due to the significantly deeper burial of the varnish clam, making it less accessible. Although the morphology (i.e. thin shell, compressed shape) of the invader increases its vulnerability to predation, burial depth provides a predation refuge. These results demonstrate how interactions between native predators and the physical characteristics and behaviour of the invader can be instrumental in influencing the success of an invasive species.  相似文献   

20.
Bom  Roeland A.  van Gils  Jan A.  Molenaar  Karen  Kwarteng  Andy Y.  Victor  Reginald  Folmer  Eelke O. 《Hydrobiologia》2020,847(20):4295-4309

Brachyuran crabs are an important ecological and economical, yet often unstudied aspect of intertidal mudflats of the Arabian Peninsula. Here we provide baseline density estimates of crabs at the relatively pristine intertidal mudflats of Barr Al Hikman (Sultanate of Oman) and provide information on their life cycle and habitat preference. Across the winters of 2012–2015 crabs were sampled on a grid covering the entire intertidal depth gradient. 29 species were found and average densities varied between 12 and 54 crabs/m2. Deposit-feeding and herbivorous crabs were the most abundant species across all winters. Size frequency data and the presence of ovigerous females show that most crabs species reproduce in the intertidal area. P. segnis, the most important crab for local fisheries, was found to use the intertidal area as a nursery ground. We analysed the relationships between the two most abundant crab species, Macrophthalmus sulcatus and Thalamita poissonii and the environmental variables: seagrass density, tidal elevation, median grain size and sediment depth using Random Forest models. The predictive capacity of the models and the relative importance of the environmental predictors varied between years, but crab densities in general were positively associated with seagrass density, presumably because seagrass offers feeding habitat.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号