首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rotating biodisc contactor (RBC) was used for biological treatment of synthetic saline wastewater with and without sludge (cell) recycle. Synthetic wastewater composed of diluted molasses, urea, KHzPO4, MgSO4 and 3% salt (NaCl) was fed to the RBC unit with different flow rates. Underflow from a sedimentation tank placed at the end of RBC unit was recycled to the RBC unit with a constant flow rate. COD removal rates and efficiencies were determined for the cases of with and without sludge recycle and compared. COD removal efficiencies and rates obtained with sludge recycle were higher than those obtained without sludge recycle at low A/Q ratios (high flow rate) because of extra residence time provided by sedimentation tank. However, no significant difference was observed in the performance of RBC with and without sludge recycle at high A/Q ratios (low flow rates). Because of poor sedimentation characteristics of the culture no significant increase in biomass concentration in the RBC was observed when the system was operated with sludge recycle.  相似文献   

2.
Biological treatment of saline wastewater by conventional activated sludge culture usually results in low removal of chemical oxygen demand (COD) because of plasmolysis of the organisms at high salt concentrations. Since salt removal operations by physicochemical processes before biological treatment are costly, a salt-tolerant organism (Halobacter halobium) was used for effective biological treatment of saline wastewater in this study. Halobacter halobium was used in activated sludge culture for COD removal from saline wastewater (1–5% salt) by fed-batch operation of an aeration tank. Inclusion of Halobacter halobium into activated sludge culture improved the rate and extent of COD removals especially with salt above 2% (w/v).  相似文献   

3.
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.  相似文献   

4.
Performances of biological treatment processes of saline wastewater are usually low because of adverse effects of salt on microbial flora. High salt concentrations in wastewater cause plasmolysis and loss of activity of cells resulting in low COD removal efficiencies. In order to improve biological treatment performance of saline wastewater, a halophilic organism Halobacter halobium was used along with activated sludge culture.A synthetic wastewater composed of diluted molasses, urea, KH2PO4 and various concentrations of salt (1%–5% NaCl) was treated in an aerobic-biological reactor by fed-batch operation. Activated sludge culture with and without Halobacter were used as seed cultures. Variations of COD removal rate and efficiency with salt concentration were determined for both cultures and results were compared. Inclusion of Halobacter into activated sludge culture resulted in significant improvements in COD removal efficiency. A rate expression including salt inhibition effect was proposed and kinetic constants were determined by using experimental data.This study was supported by the Technical and Scientific Research Council of Turkey.  相似文献   

5.
The dynamic behavior of a laboratory-scale activated sludge biological waste treatment process with recycle and wasting of sludge was investigated by subjecting the system to step changes in the influent waste concentration, the recycle flow rate, or the sludge wasting rate. The dynamic behavior of the system was examined by measuring adenosine triphosphate (ATP) in addition to dissolved chemical oxygen demand (COD) and cell dry weight in the aeration tank. Cell dry weight of the recyle flow and effluent COD were also measured. Analysis of the results and estimation of time constants assuming first order responses showed that the time constants characterizing the dynamic responses of the sludge were directly related to the sludge mean residence time. The time constants estimated from dissolved COD measurements were of the same order of magnitude as the fluid residence time in the aeration tank. The ATP transient response was frequently different from that of the cell dry weight in the aeration tank.  相似文献   

6.
Wastewaters containing chlorophenol compounds are difficult to treat by biological means because of toxic effects of chlorophenols on microorganisms. Synthetic wastewater containing 2,4 dichlorophenol (DCP) was biologically treated in an activated sludge unit at different sludge ages varying between 5 and 30 days while the feed COD, DCP contents and hydraulic residence time (HRT) were constant. Effects of sludge age on COD, DCP and toxicity removals were investigated. Increases in sludge age caused significant increases in biomass concentration in the aeration tank, which resulted in increases in percent COD, DCP and toxicity removals. COD removal increased from 58 to 90%, while DCP and toxicity removals increased from 15 to 100% and from 38 to 100%, respectively, when the sludge age was raised from 5 to 30 days. Resazurin method based on dehydrogenase activity was used for assessment of the feed and effluent wastewater toxicity. Sludge volume index (SVI) decreased with increasing sludge age indicating improved settling characteristics of the sludge at high sludge ages. Operation at a sludge age of 25 days resulted in more than 90% COD and nearly 100% DCP and toxicity removal with an SVI value of 108 ml g−1 under the experimental conditions tested.  相似文献   

7.
Biological treatment of landfill leachate usually results in low treatment efficiencies because of high chemical oxygen demand (COD), high ammonium-N content and also presence of toxic compounds such as heavy metals. A landfill leachate with high COD content was pre-treated by coagulation-flocculation followed by air stripping of ammonia at pH = 12. Pre-treated leachate was biologically treated in an aeration tank operated in fed-batch mode with and without addition of powdered activated carbon (PAC). PAC at 2 g l–1 improved COD and ammonium-N removals resulting in nearly 86% COD and 26% NH4-N removal.  相似文献   

8.
Biological treatment of landfill leachate usually results in low COD removals because of high chemical oxygen demand (COD), high ammonium-N content and presence of toxic compounds. Coagulation-flocculation with lime addition and air stripping of ammonia were used as pre-treatment in this study in order to improve biological treatability of the leachate. Pre-treated leachate was subjected to adsorbent supplemented biological treatment in an aeration tank operated in fed-batch mode. COD and NH(4)-N removal performances of powdered activated carbon (PAC) and powdered zeolite (PZ) were compared during biological treatment. Adsorbent concentrations varied between 0 and 5 gl(-1). Percent COD and ammonium-N removals increased with increasing adsorbent concentrations. Percent COD removals with PAC addition were significantly higher than those obtained with the zeolite. However, zeolite performed better than the PAC in ammonium-N removal from the leachate. Nearly 87% and 77% COD removals were achieved with PAC and zeolite concentrations of 2 gl(-1), respectively. Ammonium-N removals were 30% and 40% with PAC and zeolite concentrations of 5 gl(-1), respectively at the end of 30 h of fed-batch operation.  相似文献   

9.
Evolutionary operation (EVOP) was used to experimentally investigate the optimum steady state operating conditions for a step aeration activated sludge waste treatment process. A laboratory scale two tank step aeration activated sludge unit with fixed total volume, total influent flow rate, recycle flow rate, and sludge wasting rate was employed. The volume ratio and flow rate ratio which minimized effluent chemical oxygen demand were determined. The results indicate that EVOP is a useful technique for improving the performance of biological processes.  相似文献   

10.
Biological treatment of saline wastewater presents unique difficulties as a result of plasmolysis of microorganisms in the presence of salt. Removal of salt from wastewater before biological treatment by reverse osmosis or ion exchange operations are rather expensive. Inclusion of halophilic organisms in activated sludge culture seems to be a more practical approach in biological treatment of saline wastewater. A synthetic wastewater composed of diluted molasses, urea, KH2PO4, MgSO4 and various concentrations of salt (0–5% NaCl) was treated in a rotating biodisc contactor (RBC). A salt tolerant organism Halobacter halobium was added onto activated sludge culture (50%) and used as inoculum. Effects of important process variables such as A/Q ratio, COD loading rate, feed COD concentration, salt concentration and liquid phase aeration on system performance were investigated. An empirical mathematical model describing the system's performance as a function of important process variables was developed and constants were determined by using the experimental data.  相似文献   

11.
Kinetics of biological removal of COD from a synthetic wastewater in a continuous fluidized bed containing sponge particles with wire mesh was investigated. Synthetic wastewater consisted of diluted molasses, urea, KH2PO4 and MgSO4 resulting in COD/N/P = 100/8/1. Fluidized bed contained sponge particles surrounded by stainless steel wires as support particles for organisms. A culture of Zooglea ramigera was used as the dominant organisms in mixed culture media throughout the experiments.The system was operated continuously with different hydraulic residence times, and COD loading rates and the variation of effluent COD concentration with those parameters was investigated. Kinetic constants of the system were determined by using the continuous experimental data. System has been operated under COD limitation and DO limitations were overcome by vigirous aeration. Kinetic constants determined in this system were in good agreement with literature values with a possible inhibition effect on Ks term.This study was supported by the Technical and Scientific Research Council of Turkiye.  相似文献   

12.
A laboratory investigation has been undertaken to asses the effects of two operating parameters, mean cell residence time (MCRT) and anoxic hydraulic retention time (HRT), on the performance of an anoxic/oxic activated sludge system. The performance of the system was evaluated in terms of its COD, nitrogen, and biomass characteristics. An activated sludge system is capable of producing a better effluent, in terms of COD and nitrogen characteristics, when it is operated in an anoxic/oxic fashion. A longer MCRT and an adequate anoxic HRT are desirable in the operation of an anoxic/oxic activated sludge system. For the wastewater used in this investigation, the anoxic/oxic unit was capable of producing an effluent with the following characteristics when it was operated at MCRT = 20 days, total system HRT = 10 h, and anoxic HRT = 3-5 h: COD = 15 mg/L; VSS = 10 mg/L; TKN = 1.30 mg/L; NH(3) - N = 0.60 mg/L; and NO(2) + NO(3) - N = 5.0 mg/L. A uniform distribution of biomass is achievable in an anoxic/oxic activated sludge system because of the intensive recirculation/convection maintained. The provision of an anoxic zone in the aeration tank promotes a rapid adsorption of feed COD into the biomass without an immediate utilization for cell synthesis. This, in turn, results in a high microbial activity and a lower observed biomass yield in the system. A tertiary treatment efficiency is achievable in an anoxic/oxic activated sludge system with only secondary treatment operations and costs. A conventional activated sludge system can be easily upgraded by converting to the anoxic/oxic operation with minor process modifications.  相似文献   

13.
Synthetic wastewater containing 2,4-dichlorophenol (DCP) was biologically treated using a hybrid-loop bioreactor system consisting of a packed column biofilm reactor (PCBR) and an aerated tank with effluent recycle. Effects of the feed DCP concentration on COD, DCP and toxicity removals were investigated. Biomass concentration in the packed column and in the aeration tank decreased with increasing feed DCP content due to toxic effects of DCP on the microorganisms. Low biomass concentrations at high DCP contents resulted in low COD, DCP and toxicity removals. Therefore, percent DCP, COD and toxicity removals decreased with increasing feed DCP content. Nearly 70% COD removal was achieved with a feed DCP content of 380 mg L(-1). The system should be operated with the feed DCP lower than 100 mg L(-1) in order to obtain DCP, COD and toxicity removals above 90%.  相似文献   

14.
A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.  相似文献   

15.
Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-strength wastewater (chemical oxygen demand, or COD, of 11,000 mg l(-1)) and concurrently operated until biomass concentrations and effluent quality stabilized. Membrane aeration was then initiated in one of these bioreactors, leading to substantially improved COD removal efficiency (> 95%) compared to the unaerated control bioreactor (approximately 65%). The membrane-augmented anaerobic bioreactor required substantially less base addition to maintain circumneutral pH and exhibited 75% lower volatile fatty acid concentrations compared to the unaerated control bioreactor. The membrane-aerated bioreactor, however, failed to improve nitrogenous removal efficiency and produced 80% less biogas than the control bioreactor. A third membrane-augmented anaerobic bioreactor was operated to investigate the impact of start-up procedure on nitrogenous pollutant removal. In this bioreactor, excellent COD (>90%) and nitrogenous (>95%) pollutant removal efficiencies were observed at an intermediate COD concentration (5,500 mg l(-1)). Once the organic content of the influent wastewater was increased to full strength (COD = 11,000 mg l(-1)), however, nitrogenous pollutant removal stopped. This research demonstrates that partial aeration of anaerobic bioreactors using oxygen-transferring membranes is a novel approach to improve treatment performance. Additional research, however, is needed to optimize membrane surface area versus the organic loading rate to achieve the desired effluent quality.  相似文献   

16.
The performance of an activated sludge wastewater treatment process consisting of an aeration tank and a secondary settler has been studied. A tanks-in-series model with backflow was used for mathematical modeling of the activated sludge wastewater treatment process. Non-linear algebraic equations obtained from the material balances of MLSS (mixed liquor suspended solids or activated sludge), BOD (biological oxygen demand) and DO (dissolved oxygen) for the aeration tank and the settler and from the behavior of the settler were solved simultaneously using the modified Newton-Raphson technique. The concentration profiles of MLSS, BOD and DO in the aeration tank were obtained. The simulation results were examined from the viewpoints of mixing in the aeration tank and flow in the secondary settling tank. The relationships between the overall performance of the activated sludge process and the operating and design parameters such as hydraulic residence time, influent BOD, recycle ratio and waste sludge ratio were obtained.  相似文献   

17.
Ceramic industry wastewaters not only contain high suspended and total solids but also significant amounts of dissolved organics resulting in high BOD or COD loads. Suspended solids can be removed from the wastewater by chemical precipitation. However, dissolved BOD/COD compounds can only be removed by biological or chemical oxidation. Effluent wastewater from chemical sedimentation stage of EGE CERAMIC industry was characterized and subjected to biological treatment in a laboratory scale activated sludge unit. Experiments were conducted at different hydraulic and solids retention times. The best results were obtained with Šc=20 h of hydraulic and Šc=20 days of solids retention times (sludge age) resulting in effluent COD concentration of 40 mg/l from a feed wastewater of 720 mg/l COD content. The suspended solids content of the activated sludge effluent was approximately 52 mg/l.  相似文献   

18.
Laera G  Chong MN  Jin B  Lopez A 《Bioresource technology》2011,102(13):7012-7015
This paper aims to demonstrate that integrating biological process and photocatalytic oxidation in a system operated in recycling mode can be a promising technology to treat pharmaceutical wastewater characterized by simultaneous presence of biodegradable and refractory/inhibitory compounds. A lab-scale system integrating a membrane bioreactor (MBR) and a TiO2 slurry photoreactor was fed on simulated wastewater containing 10 mg/L of the refractory drug Carbamazepine (CBZ). Majority of chemical oxygen demand (COD) was removed by the MBR, while the photocatalytic oxidation was capable to degrade CBZ. CBZ degradation kinetics and its impacts on the biological process were studied. The adoption of a recycling ratio of 4:1 resulted in removal of up to 95% of CBZ. Effluent COD reduction, sludge yield increase and respirometric tests suggested that the oxidation products were mostly biodegradable and not inhibiting the microbial activity. These results evidenced the advantages of the proposed approach for treating pharmaceutical wastewater and similar industrial effluents.  相似文献   

19.
The stability with respect to filamentous bulking of two activated sludge fully-aerobic systems, one with a completely mixed tank and one with a channel reactor, fed either by a synthetic wastewater or by a primary-settled municipal wastewater, of variable composition and flow rate, has been investigated. The morphological characteristics of the biomass in terms of floc size and roughness and of filamentous bacteria abundance have been monitored by image analysis. Severe bulking was only observed in the well-mixed tank fed at a constant flow rate by synthetic substrate of constant concentration, when the channel reactor fed in a similar manner was fully stable. Variations of biomass characteristics as well as of settling properties were observed on both systems fed with the real wastewater, but these events were related to the characteristics of the wastewater, as similar changes were observed on the full-scale plant fed with the same substrate. In any case, automated image analysis was an efficient way to monitor in detail the fate of the activated sludge at pilot and full scale.  相似文献   

20.
Micro-aeration, which refers to the addition of very small amounts of air, is a simple technology that can potentially be incorporated in septic tanks to improve the digestion performance. The purpose of this study was to investigate and compare the effects of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. 1.6 L batch reactor experiments were carried out in duplicate using raw primary sludge, with 4.1 % total solids, and diluted primary sludge, with 2.1 % total solids. Reactors were operated for 5 weeks at room temperature to simulate septic tank conditions. Micro-aeration rate of 0.00156 vvm effectively solubilised chemical oxygen demand (COD) and improved the subsequent degradation of COD. Micro-aeration also increased the generation of ammonia and soluble proteins, but did not improve the reduction in total and volatile solids, or the reduction in carbohydrates. Experiments using diluted sludge samples showed similar trends as the experiments with raw sludge, which suggest that initial solids concentration did not have a significant effect on the degradation of primary sludge under septic tank conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号