首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With billions of years of evolution under its belt, Nature has been expanding and optimizing its biosynthetic capabilities. Chemically complex secondary metabolites continue to challenge and inspire today's most talented synthetic chemists. A brief glance at these natural products, especially the substantial structural variation within a class of compounds, clearly demonstrates that Nature has long played the role of medicinal chemist. The recent explosion in genome sequencing has expanded our appreciation of natural product space and the vastness of uncharted territory that remains. One small corner of natural product chemical space is occupied by the recently dubbed thiazole/oxazole-modified microcins (TOMMs), which are ribosomally produced peptides with posttranslationally installed heterocycles derived from cysteine, serine and threonine residues. As with other classes of natural products, the genetic capacity to synthesize TOMMs has been widely disseminated among bacteria. Over the evolutionary timescale, Nature has tested countless random mutations and selected for gain of function in TOMM biosynthetic gene clusters, yielding several privileged molecular scaffolds. Today, this burgeoning class of natural products encompasses a structurally and functionally diverse set of molecules (i.e. microcin B17, cyanobactins, and thiopeptides). TOMMs presumably provide their producers with an ecological advantage. This advantage can include chemical weapons wielded in the battle for nutrients, disease-promoting virulence factors, or compounds presumably beneficial for symbiosis. Despite this plethora of functions, many TOMMs await experimental interrogation. This review will focus on the biosynthesis and natural combinatorial diversity of the TOMM family.  相似文献   

2.

Background

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a diverse group of biologically active bacterial molecules. Due to the conserved genomic arrangement of many of the genes involved in their synthesis, these secondary metabolite biosynthetic pathways can be predicted from genome sequence data. To date, however, despite the myriad of sequenced genomes covering many branches of the bacterial phylogenetic tree, such an analysis for a broader group of bacteria like anaerobes has not been attempted.

Results

We investigated a collection of 211 complete and published genomes, focusing on anaerobic bacteria, whose potential to encode RiPPs is relatively unknown. We showed that the presence of RiPP-genes is widespread among anaerobic representatives of the phyla Actinobacteria, Proteobacteria and Firmicutes and that, collectively, anaerobes possess the ability to synthesize a broad variety of different RiPP classes. More than 25% of anaerobes are capable of producing RiPPs either alone or in conjunction with other secondary metabolites, such as polyketides or non-ribosomal peptides.

Conclusion

Amongst the analyzed genomes, several gene clusters encode uncharacterized RiPPs, whilst others show similarity with known RiPPs. These include a number of potential class II lanthipeptides; head-to-tail cyclized peptides and lactococcin 972-like RiPP. This study presents further evidence in support of anaerobic bacteria as an untapped natural products reservoir.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-983) contains supplementary material, which is available to authorized users.  相似文献   

3.
  1. Download : Download high-res image (272KB)
  2. Download : Download full-size image
Highlights► RiPPs have high capabilities of target interaction far beyond the field of anti-infectives. ► RiPPs are especially suitable for design and engineering with the genetic code expansion. ► First published studies yielded RiPPs with unnatural/synthetic amino acids. ► Achievement: expanded scope of the in vivo (mainly bacterial) RiPPs synthesis. ► Perspective: design of RiPPS with novel chemistries and unique sequence combinations.  相似文献   

4.
Journal of Industrial Microbiology & Biotechnology - Polytheonamides are the most extensively modified ribosomally synthesized and post-translationally modified peptide natural products (RiPPs)...  相似文献   

5.
Introduction: Bioactive peptides such as antimicrobial peptides (AMPs), ribosomally synthesized and post translationally modified peptides (RiPPs) and the non-ribosomal peptides (NRPs) have emerged with promising applications in medicine, agriculture and industry. However, their development has been limited by several difficulties making it necessary to search for novel discovery methods. In this context, proteomics has been considered a reliable tool.

Areas covered: This review highlights recent developments in proteomic tools that facilitate the discovery of AMPs, RiPPs and NRPs as well as the elucidation of action mechanisms of AMPs and resistance mechanisms of pathogens to them.

Expert commentary: Proteomic approaches have emerged as useful tools for the study of bioactive peptides, especially mass spectrometry-based peptidomics profiling, a promising strategy for AMP discovery. Furthermore, the rapidly expanding fields of genome mining and genome sequencing techniques, as well as mass spectrometry, have revolutionized the discovery of novel RiPPs and NRPs from complex biological samples.  相似文献   


6.
Streptolysin S-like virulence factors: the continuing sagA   总被引:1,自引:0,他引:1  
Streptolysin S (SLS) is a potent cytolytic toxin and virulence factor that is produced by nearly all Streptococcus pyogenes strains. Despite a 100-year history of research on this toxin, it has only recently been established that SLS is just one of an extended family of post-translationally modified virulence factors (the SLS-like peptides) that are produced by some streptococci and other Gram-positive pathogens, such as Listeria monocytogenes and Clostridium botulinum. In this Review, we describe the identification, genetics, biochemistry and various functions of SLS. We also discuss the shared features of the virulence-associated SLS-like peptides, as well as their place within the rapidly expanding family of thiazole/oxazole-modified microcins (TOMMs).  相似文献   

7.
Lantibiotics are lanthionine ring containing natural products that belong to the class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Recent expansion in the availability of microbial genome data and in silico analysis tools have accelerated the discovery of these promising alternatives to antibiotics. Following the genome-mining approach, a biosynthetic gene cluster for a putative two-component lantibiotic, roseocin, was identified in the genome of an Actinomycete, Streptomyces roseosporus NRRL 11379. Posttranslationally modified lanthipeptides of this cluster were obtained by heterologous expression of the genes in Escherichia coli, and were in vitro reconstituted to their bioactive form by exploiting commercial proteases like endoproteinase GluC, and proteinase K. The two peptides displayed synergistic antimicrobial activity against Gram-positive bacteria including the WHO high-priority pathogens, MRSA and VRE. Structural characterization confirmed the installation of four (methyl)lanthionine rings with an indispensable disulfide bond in the α-peptide, and six (methyl)lanthionine rings in the β-peptide, by a single promiscuous lanthionine synthetase, RosM. Roseocin is the first two-component lantibiotic from a non-Firmicute, with extensive lanthionine bridging.  相似文献   

8.
Thiazole/oxazole-modified microcins (TOMMs) encompass a recently defined class of ribosomally synthesized natural products with a diverse set of biological activities. Although TOMM biosynthesis has been investigated for over a decade, the mechanism of heterocycle formation by the synthetase enzymes remains poorly understood. Using substrate analogs and isotopic labeling, we demonstrate that ATP is used to directly phosphorylate the peptide amide backbone during TOMM heterocycle formation. Moreover, we present what is to our knowledge the first experimental evidence that the D-protein component of the heterocycle-forming synthetase (YcaO/domain of unknown function 181 family member), formerly annotated as a docking protein involved in complex formation and regulation, is able to perform the ATP-dependent cyclodehydration reaction in the absence of the other TOMM biosynthetic proteins. Together, these data reveal the role of ATP in the biosynthesis of azole and azoline heterocycles in ribosomal natural products and prompt a reclassification of the enzymes involved in their installation.  相似文献   

9.
Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria.

This study shows that decRiPPter, an innovative algorithmic approach using pan-genomics and machine learning, can discover novel types of ribosomally synthesized peptide (RIPP) natural products, including a new class of lanthipeptides.  相似文献   

10.
[背景]化学防治污染日益严重,作物抗性、农药残留、病害再生现象越来越普遍,因此筛选新型生防菌株及研究其抗菌物质已成为热点.[目的]筛选出一株对禾旋孢腔菌等植物病原菌具有生防功能的贝莱斯芽孢杆菌,挖掘其调控合成细菌素、抗菌肽(RiPPs)的基因簇.[方法]通过分离筛选、对峙培养等方法筛选出菌株,通过全细胞脂肪酸和Biol...  相似文献   

11.
In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications.  相似文献   

12.
杨赞  梁艺璇  张军  何增国 《微生物学报》2022,62(9):3289-3305
羊毛硫肽(lanthipeptide)是一类由核糖体合成并经翻译后修饰的含羊毛硫氨酸或β-甲基羊毛硫氨酸的多肽。近年来,放线菌来源的羊毛硫肽因其突出的抗菌活性和罕见的生物活性而备受关注。本文重点对放线菌来源的不同类型的羊毛硫肽的结构特征及其特性进行了综述,讨论了生物或化学方法修饰天然羊毛硫肽和基因组挖掘发现结构新颖的羊毛硫肽在开发符合实际应用需求的放线菌来源的羊毛硫肽中的应用,并对放线菌来源的羊毛硫肽的应用潜力进行了总结和展望。  相似文献   

13.
Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC''s antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether–containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,β-dehydro-amino acid intermediate during Cα-thioether bridge LC–MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.  相似文献   

14.
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C–H, C–C, and C–N bonds, including heteroatom oxidation, oxidative C–C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.  相似文献   

15.
Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.  相似文献   

16.
The growing problem of antibiotic resistance has led to the exploration of uncultured bacteria as potential sources of new antimicrobials. PCR amplicon analyses and short-read sequencing studies of samples from different environments have reported evidence of high biosynthetic gene cluster (BGC) diversity in metagenomes, indicating their potential for producing novel and useful compounds. However, recovering full-length BGC sequences from uncultivated bacteria remains a challenge due to the technological restraints of short-read sequencing, thus making assessment of BGC diversity difficult. Here, long-read sequencing and genome mining were used to recover >1400 mostly full-length BGCs that demonstrate the rich diversity of BGCs from uncultivated lineages present in soil from Mars Oasis, Antarctica. A large number of highly divergent BGCs were not only found in the phyla Acidobacteriota, Verrucomicrobiota and Gemmatimonadota but also in the actinobacterial classes Acidimicrobiia and Thermoleophilia and the gammaproteobacterial order UBA7966. The latter furthermore contained a potential novel family of RiPPs. Our findings underline the biosynthetic potential of underexplored phyla as well as unexplored lineages within seemingly well-studied producer phyla. They also showcase long-read metagenomic sequencing as a promising way to access the untapped genetic reservoir of specialised metabolite gene clusters of the uncultured majority of microbes.Subject terms: Metagenomics, Antibiotics, Microbial ecology, DNA sequencing  相似文献   

17.
【目的】套索肽作为一类核糖体翻译后修饰肽(RiPPs)广泛分布于放线菌中,以其独特的修饰结构和多样的生理活性受到了广泛的关注。为了更好地研究未知的套索肽,期望开发基于链霉菌的无细胞转录翻译平台(下称“无细胞平台”)实现无细胞合成套索肽或其前体肽。【方法】首先尝试以不同的链霉菌构建无细胞合成平台,并以绿色荧光蛋白为报告蛋白对平台产率进行优化;在构建合适稳定的表达体系后,将包含有套索肽生物合成基因的质粒引入体系中以探索套索肽的无细胞合成。【结果】在对基于模式菌株Streptomyces lividans TK24的无细胞体系进行制备工艺、体系组分、反应条件等多个参数进行优化后,该体系最高能达到90μg/mL的荧光蛋白表达量;基于该体系成功表达了目标套索肽的前体肽,并通过融合SUMO标签增加前体肽在该体系中的稳定性。【结论】本研究成功构建了一类链霉菌无细胞平台,为丰富来源的基因表达提供了可能性。尽管该体系在对表达套索肽未知蛋白的适用性上仍有待进一步提升,但无细胞平台在天然产物的探索中将起到越来越重要的作用。  相似文献   

18.
Peptide-derived natural products are a large class of bioactive molecules that often contain chemically challenging modifications. In the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs), radical-SAM (rSAM) enzymes have been shown to catalyze the formation of ether, thioether, and carbon-carbon bonds on the precursor peptide. The installation of these bonds typically establishes the skeleton of the mature RiPP. To facilitate the search for unexplored rSAM-dependent RiPPs for the community, we employed a bioinformatic strategy to screen a subfamily of peptide-modifying rSAM enzymes which are known to bind up to three [4Fe-4S] clusters. A sequence similarity network was used to partition related families of rSAM enzymes into >250 clusters. Using representative sequences, genome neighborhood diagrams were generated using the Genome Neighborhood Tool. Manual inspection of bacterial genomes yielded numerous putative rSAM-dependent RiPP pathways with unique features. From this analysis, we identified and experimentally characterized the rSAM enzyme, TvgB, from the tvg gene cluster from Halomonas anticariensis. In the tvg gene cluster, the precursor peptide, TvgA, is comprised of a repeating TVGG motif. Structural characterization of the TvgB product revealed the repeated formation of cyclopropylglycine, where a new bond is formed between the γ-carbons on the precursor valine. This novel RiPP modification broadens the functional potential of rSAM enzymes and validates the proposed bioinformatic approach as a practical broad search tool for the discovery of new RiPP topologies.  相似文献   

19.
Recent phylogenetic analyses of cetacean relationships based on DNA sequence data have challenged the traditional view that baleen whales (Mysticeti) and toothed whales (Odontoceti) are each monophyletic, arguing instead that baleen whales are the sister group of the odontocete family Physeteridae (sperm whales). We reexamined this issue in light of a morphological data set composed of 207 characters and molecular data sets of published 12S, 16S, and cytochrome b mitochondrial DNA sequences. We reach four primary conclusions: (1) Our morphological data set strongly supports the traditional view of odontocete monophyly; (2) the unrooted molecular and morphological trees are very similar, and most of the conflict results from alternative rooting positions; (3) the rooting position of the molecular tree is sensitive to choice of artiodactyls outgroup taxa and the treatment of two small but ambiguously aligned regions of the 12S and 16S sequences, whereas the morphological root is strongly supported; and (4) combined analyses of the morphological and molecular data provide a well-supported phylogenetic estimate consistent with that based on the morphological data alone (and the traditional view of toothed-whale monophyly) but with increased bootstrap support at nearly every node of the tree.  相似文献   

20.
Physiological and ecological allometries often pose linear regression problems characterized by (1) noncausal, phylogenetically autocorrelated independent (x) and dependent (y) variables (characters); (2) random variation in both variables; and (3) a focus on regression slopes (allometric exponents). Remedies for the phylogenetic autocorrelation of species values (phylogenetically independent contrasts) and variance structure of the data (reduced major axis [RMA] regression) have been developed, but most functional allometries are reported as ordinary least squares (OLS) regression without use of phylogenetically independent contrasts. We simulated Brownian diffusive evolution of functionally related characters and examined the importance of regression methodologies and phylogenetic contrasts in estimating regression slopes for phylogenetically constrained data. Simulations showed that both OLS and RMA regressions exhibit serious bias in estimated regression slopes under different circumstances but that a modified orthogonal (least squares variance-oriented residual [LSVOR]) regression was less biased than either OLS or RMA regressions. For strongly phylogenetically structured data, failure to use phylogenetic contrasts as regression data resulted in overestimation of the strength of the regression relationship and a significant increase in the variance of the slope estimate. Censoring of data sets by simulated extinction of taxa did not affect the importance of appropriate regression models or the use of phylogenetic contrasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号