首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adenosylcobalamin-dependent glycerol dehydratase undergoes mechanism-based inactivation by its physiological substrate glycerol. We identified two genes (gdrAB) of Klebsiella pneumoniae for a glycerol dehydratase-reactivating factor (Tobimatsu, T., Kajiura, H., Yunoki, M., Azuma, M., and Toraya, T. (1999) J. Bacteriol. 181, 4110-4113). Recombinant GdrA and GdrB proteins formed a tight complex of (GdrA)(2)(GdrB)(2), which is a putative reactivating factor. The purified factor reactivated the glycerol-inactivated and O(2)-inactivated glycerol dehydratases as well as activated the enzyme-cyanocobalamin complex in vitro in the presence of ATP, Mg(2+), and adenosylcobalamin. The factor mediated the exchange of the enzyme-bound, adenine-lacking cobalamins for free, adenine-containing cobalamins in the presence of ATP and Mg(2+) through intermediate formation of apoenzyme. The factor showed extremely low ATP-hydrolyzing activity and formed a tight complex with apoenzyme in the presence of ADP. Incubation of the enzyme-cyanocobalamin complex with the reactivating factor in the presence of ADP brought about release of the enzyme-bound cobalamin. The resulting tight inactive complex of apoenzyme with the factor dissociated upon incubation with ATP, forming functional apoenzyme and a low affinity form of factor. Thus, it was established that the reactivation of the inactivated holoenzymes takes place in two steps: ADP-dependent cobalamin release and ATP-dependent dissociation of the apoenzyme-factor complex. We propose that the glycerol dehydratase-reactivating factor is a molecular chaperone that participates in reactivation of the inactivated enzymes.  相似文献   

2.
Adenosylcobalamin-dependent glycerol and diol dehydratases undergo inactivation by the physiological substrate glycerol during catalysis. In the permeabilized cells of Klebsiella pneumoniae, Klebsiella oxytoca, and recombinant Escherichia coli, glycerol-inactivated glycerol dehydratase and diol dehydratase are reactivated by their respective reactivating factors in the presence of ATP, Mg2+, and adenosylcobalamin. Both of the reactivating factors consist of two subunits. To examine the specificities of the reactivating factors, their genes or their hybrid genes were co-expressed with dehydratase genes in E. coli cells in various combinations. The reactivating factor of K. oxytoca for diol dehydratase efficiently cross-reactivated the inactivated glycerol dehydratase, whereas the reactivating factor of K. pneumoniae for glycerol dehydratase hardly cross-reactivated the inactivated diol dehydratase. Both of the two hybrid reactivating factors rapidly reactivated the inactivated glycerol dehydratase. In contrast, the hybrid reactivating factor containing the large subunit of the glycerol dehydratase reactivating factor hardly reactivated the inactivated diol dehydratase. These results indicate that the glycerol dehydratase reactivating factor is much more specific for the dehydratase partner than the diol dehydratase reactivating factor and that a large subunit of the reactivating factors principally determines the specificity for a dehydratase.  相似文献   

3.
Kajiura H  Mori K  Shibata N  Toraya T 《The FEBS journal》2007,274(21):5556-5566
Adenosylcobalamin-dependent diol and glycerol dehydratases are isofunctional enzymes and undergo mechanism-based inactivation by a physiological substrate glycerol during catalysis. Inactivated holoenzymes are reactivated by their own reactivating factors that mediate the ATP-dependent exchange of an enzyme-bound, damaged cofactor for free adenosylcobalamin through intermediary formation of apoenzyme. The reactivation takes place in two steps: (a) ADP-dependent cobalamin release and (b) ATP-dependent dissociation of the resulting apoenzyme-reactivating factor complexes. The in vitro experiments with purified proteins indicated that diol dehydratase-reactivating factor (DDR) cross-reactivates the inactivated glycerol dehydratase, whereas glycerol dehydratase-reactivating factor (GDR) did not cross-reactivate the inactivated diol dehydratase. We investigated the molecular basis of their specificities in vitro by using purified preparations of cognate and noncognate enzymes and reactivating factors. DDR mediated the exchange of glycerol dehydratase-bound cyanocobalamin for free adeninylpentylcobalamin, whereas GDR cannot mediate the exchange of diol dehydratase-bound cyanocobalamin for free adeninylpentylcobalamin. As judged by denaturing PAGE, the glycerol dehydratase-DDR complex was cross-formed, although the diol dehydratase-GDR complex was not formed. There were no specificities of reactivating factors in the ATP-dependent dissociation of enzyme-reactivating factor complexes. Thus, it is very likely that the specificities of reactivating factors are determined by the capability of reactivating factors to form complexes with apoenzymes. A modeling study based on the crystal structures of enzymes and reactivating factors also suggested why DDR cross-forms a complex with glycerol dehydratase, and why GDR does not cross-form a complex with diol dehydratase.  相似文献   

4.
5.
6.
放线菌能产生多样性丰富的小分子化合物,但大多数放线菌因为处于“活的尚未培养”状态而无法分离培养。造成“活的尚未培养”状态的原因之一可能是由于一些环境因素,例如有机物、重金属、抗生素等胁迫使细胞处于休眠保护状态,直到遇到适宜的条件才能继续复苏生长。复苏促进因子(Resuscitation-Promoting Factor,Rpf)是由某些放线菌分泌的一类蛋白质,首次在藤黄微球菌(Micrococcus luteus)中发现,之后人们对Rpf蛋白的功能和分布给予了更多的关注。Rpf蛋白能促进一些休眠的革兰氏阳性细菌复苏,这为“活的尚未培养”放线菌的分离培养提供了可能性。同时,针对一些致病放线菌物种,开发Rpf蛋白抑制物为相关疾病的治疗也提供了一条新的途径。基于此,本文对Rpf蛋白的结构组成、特征功能、作用机制及应用前景进行了简要的概述。  相似文献   

7.
The committed biosynthetic reaction to benzoyl-coenzyme A in the marine bacterium "Streptomyces maritimus" is carried out by the novel prokaryotic phenylalanine ammonia lyase (PAL) EncP, which converts the primary amino acid L-phenylalanine to trans-cinnamic acid. Recombinant EncP is specific for L-phenylalanine and shares many biochemical features with eukaryotic PALs, which are substantially larger proteins by approximately 200 amino acid residues.  相似文献   

8.
Ethanolamine ammonia-lyase is an adenosylcobalamin-dependent enzyme that catalyzes the rearrangement of ethanolamine and other vicinal amino alcohols to oxo-compounds and ammonia. Treatment of this enzyme with the sulfhydryl group-blocking reagent methyl methanethiosulfonate produces a species with diminished catalytic activity. When methyl methanethiosulfonate -treated ethanolamine ammonia-lyase was incubated with a carboxyl-blocking reagent consisting of glycine ethyl ester plus a water-soluble carbodiimide, the enzyme lost more than 80% of its residual activity, while at the same time glycine ethyl ester was incorporated into it at a stoichiometry of 6 mol/mol of enzyme. Both the loss of activity and the incorporation of glycine ethyl ester were prevented if ethanolamine was included in the glycine ethyl ester-containing incubation mixture. These results suggest that an active site carboxyl group plays a role in the mechanism of catalysis by ethanolamine ammonia-lyase, and that this carboxyl group is amidated when the enzyme is incubated with glycine ethyl ester plus carbodiimide.  相似文献   

9.
10.
Methylaspartate ammonia lyase (MAL; EC 4.3.1.2) catalyzes the reversible addition of ammonia to mesaconate to give (2S,3S)-3-methylaspartate and (2S,3R)-3-methylaspartate as products. MAL is of considerable biocatalytic interest because of its potential use for the asymmetric synthesis of substituted aspartic acids, which are important building blocks for synthetic enzymes, peptides, chemicals, and pharmaceuticals. Here, we have cloned the gene encoding MAL from the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. The enzyme (named Ch-MAL) was overproduced in Escherichia coli and purified to homogeneity by immobilized metal affinity chromatography. Ch-MAL is a dimer in solution, consisting of two identical subunits (∼49 kDa each), and requires Mg2+ and K+ ions for maximum activity. The optimum pH and temperature for the deamination of (2S,3S)-3-methylaspartic acid are 9.0 and 70°C (k cat = 78 s−1 and K m = 16 mM). Heat inactivation assays showed that Ch-MAL is stable at 50°C for >4 h, which is the highest thermal stability observed among known MALs. Ch-MAL accepts fumarate, mesaconate, ethylfumarate, and propylfumarate as substrates in the ammonia addition reaction. The enzyme also processes methylamine, ethylamine, hydrazine, hydroxylamine, and methoxylamine as nucleophiles that can replace ammonia in the addition to mesaconate, resulting in the corresponding N-substituted methylaspartic acids with excellent diastereomeric excess (>98% de). This newly identified thermostable MAL appears to be a potentially attractive biocatalyst for the stereoselective synthesis of aspartic acid derivatives on large (industrial) scale.  相似文献   

11.
12.
5-Day-old etiolated barley shoots were illuminated with monochromatic light (10 nm bandpass) and assayed for PAL 5 hr later. Action spectra for enhance  相似文献   

13.
Aspartate ammonia lyases (or aspartases) catalyze the reversible deamination of L-aspartate into fumarate and ammonia. The lack of crystal structures of complexes with substrate, product, or substrate analogues so far precluded determination of their precise mechanism of catalysis. Here, we report crystal structures of AspB, the aspartase from Bacillus sp. YM55-1, in an unliganded state and in complex with L-aspartate at 2.4 and 2.6 ? resolution, respectively. AspB forces the bound substrate to adopt a high-energy, enediolate-like conformation that is stabilized, in part, by an extensive network of hydrogen bonds between residues Thr101, Ser140, Thr141, and Ser319 and the substrate's β-carboxylate group. Furthermore, substrate binding induces a large conformational change in the SS loop (residues G(317)SSIMPGKVN(326)) from an open conformation to one that closes over the active site. In the closed conformation, the strictly conserved SS loop residue Ser318 is at a suitable position to act as a catalytic base, abstracting the Cβ proton of the substrate in the first step of the reaction mechanism. The catalytic importance of Ser318 was confirmed by site-directed mutagenesis. Site-directed mutagenesis of SS loop residues, combined with structural and kinetic analysis of a stable proteolytic AspB fragment, further suggests an important role for the small C-terminal domain of AspB in controlling the conformation of the SS loop and, hence, in regulating catalytic activity. Our results provide evidence supporting the notion that members of the aspartase/fumarase superfamily use a common catalytic mechanism involving general base-catalyzed formation of a stabilized enediolate intermediate.  相似文献   

14.
Ethanolamine ammonia-lyase is a bacterial enzyme that catalyzes the adenosylcobalamin-dependent conversion of certain vicinal amino alcohols to oxo compounds and ammonia. Studies of ethanolamine ammonia-lyase from Clostridium sp. and Escherichia coli have suggested that the enzyme is a heterodimer composed of subunits of Mr approximately 55,000 and 35,000. Using a partial Sau3A Salmonella typhimurium library ligated into pBR328 and selecting by complementation of a mutant lacking ethanolamine ammonia-lyase activity, we have cloned the genes for the 2 subunits of the S. typhimurium enzyme. The genes were localized to a 6.5-kilobase fragment of S. typhimurium DNA, from which they could be expressed in E. coli under noninducing conditions. Sequencing of a 2526-base pair portion of this 6.5-kilobase DNA fragment revealed two open reading frames separated by 21 base pairs. The open reading frames encoded proteins of 452 and 286 residues whose derived N-terminal sequences were identical to the N-terminal sequences of the 2 subunits of the E. coli ethanolamine ammonia-lyase, except that residue 16 of the large subunit was asparagine in the E. coli sequence and aspartic acid in the S. typhimurium sequence.  相似文献   

15.
16.
Enzymes with radical-pair intermediates have been considered as a likely target for purported magnetic field effects in humans. The bacterial enzyme ethanolamine ammonia lyase and the human enzyme methylmalonyl-CoA mutase catalyze coenzyme B12-dependent rearrangement reactions. A common step in the mechanism of these two enzymes is postulated to be homolysis of the cobalt-carbon bond of the cofactor to generate a spin-correlated radical pair consisting of the 5′-deoxyadenosyl radical and cob(II)alamin [Ado· Cbl(II)]. Thus, the reactions catalyzed by these enzymes are expected to be sensitive to an applied magnetic field according to the same principles that control radical pair chemical reactions. The magnetic field effect on ethanolamine ammonia lyase reported previously has been corroborated independently in one of the authors' laboratory. However, neither the human nor the bacterial mutase from Propionibacterium shermanii exhibits a magnetic field effect that could be greater than about 15%, considering the error limit imposed by the uncertainty of the coupled assay. Our studies suggest that putative magnetic field effects on physiological processes are not likely to be mediated by methylmalonyl-CoA mutase. Bioelectromagnetics 18:506–513, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
18.
A modern view of phenylalanine ammonia lyase.   总被引:6,自引:0,他引:6  
Phenylalanine ammonia lyase (PAL; E.C.4.3.1.5), which catalyses the biotransformation of L-phenylalanine to trans-cinnamic acid and ammonia, was first described in 1961 by Koukol and Conn. Since its discovery, much knowledge has been gathered with reference to the enzyme's catabolic role in microorganisms and its importance in the phenyl propanoid pathway of plants. The 3-dimensional structure of the enzyme has been characterized using X-ray crystallography. This has led to a greater understanding of the mechanism of PAL-catalyzed reactions, including the discovery of a recently described cofactor, 3,5-dihydro-5-methyldiene-4H-imidazol-4-one. In the past 3 decades, PAL has gained considerable significance in several clinical, industrial, and biotechnological applications. The reversal of the normal physiological reaction can be effectively employed in the production of optically pure L-phenylalanine, which is a precursor of the noncalorific sweetener aspartame (L-phenylalanyl-L-aspartyl methyl ester). The enzyme's natural ability to break down L-phenylalanine makes PAL a reliable treatment for the genetic condition phenylketonuria. In this mini-review, we discuss prominent details relating to the physiological role of PAL, the mechanism of catalysis, methods of determination and purification, enzyme kinetics, and enzyme activity in nonaqueous media. Two topics of current study on PAL, molecular biology and crystal structure, are also discussed.  相似文献   

19.
During genome sequence analysis of Rhodobacter capsulatus, nearby open reading frames were found that encode a photoactive yellow protein (PYP) and a hypothetical biosynthetic enzyme for its chromophore, a tyrosine ammonia lyase (TAL). We isolated the TAL gene, overproduced the recombinant protein in Escherichia coli, and after purification analyzed the enzyme for its activity. The catalytic efficiency for tyrosine was shown to be approximately 150 times larger than for phenylalanine, suggesting that the enzyme could in fact be involved in biosynthesis of the PYP chromophore. To our knowledge it is the first time this type of enzyme has been found in bacteria.  相似文献   

20.
Regulation of phenylalanine ammonia lyase in Rhodotorula glutinis.   总被引:5,自引:0,他引:5       下载免费PDF全文
In the red yeast Rhodotorula glutinis, phenylalanine ammonia lyase (PAL) was induced 10-fold during carbon starvation even in the absence of exogenous phenylalanine, although maximal induction occurred when phenylalanine was the nitrogen (40-fold) or carbon (100-fold) source. Apparent regulatory mutations that affected the expression of PAL were isolated by selecting mutants resistant to the analog p-fluoro-D,L-phenylalanine (PFP). One such mutant, designated FP1, could use phenylalanine as a nitrogen source but not as a carbon source. Similarly, FP1 failed to utilize intermediates of the phenylalanine degradative pathway, namely, benzoate, p-hydroxybenzoate, or 3,4-dihydroxybenzoate, as carbon sources. Although the PFP-resistant mutant contained a low level of PAL, no increase was found when it was grown with phenylalanine as the nitrogen source. A derivative of FP1, FP1a, was isolated that simultaneously regained an inducible PAL and the ability to use phenylalanine, benzoate, p-hydroxybenzoate, and 3,4-dihydroxybenzoate as carbon sources. In addition, when p-hydroxybenzoate was the carbon source, PAL was induced in the mutant FP1a but not in the PFP-sensitive parental strain. We propose that the mutation to PFP resistance occurred in a regulatory gene that controls the entire phenylalanine degradative pathway. Secondary mutations at this locus, as found in strain FP1a, not only restored expression of this pathway, but also altered the induction of PAL by metabolites of this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号