首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carboxylic acids are examples of compounds with wide industrial applications and high potential. This article presents the principles of reactive extraction along with the characteristics of tertiary amine extractants, while is given on considering the effect of the amine class and chain length. As such a brief overview the current research on reactive extraction, including the recovery of citric acid, selective amine-based extraction, and extractive fermentation is given. When discussing extractive fermentation, strategies for reducing solvent toxicity are also suggested based on specific examples. Finally, solvent regeneration and stripping of extracted acid are explained.  相似文献   

2.
Extractive fermentation has been proposed to enhance the productivity of fermentations that are end product inhibited. Unfortunately, good extractants for butanol, such as decanol, are toxic to Clostridium acetobutylicum. The use of mixed extractants, namely, mixtures of toxic and nontoxic coextractants, was proposed to circumvent this toxicity. Decanol appeared to inhibit butanol formation by C. acetobutylicum when present in a mixed extractant that also contained oleyl alcohol. However, maintenance of the pH at 4.5 alleviated the inhibition of butanol production and the consumption of butyrate during solventogenesis. A mixed extractant that contained 20% decanol in oleyl alcohol enhanced butanol formation by 72% under pH-controlled conditions. The production of acetone and acetoin was also increased, even though these two products were not extractable. The enhancement of butanol formation was not limited by the toxicity of decanol. Supplementation of glucose and butyrate in the extractive fermentation yielded a 47% increase in butanol. The enhancement of butanol formation appeared to be dependent on the presence of dissolved decanol in the broth but was not observed unless an organic phase was present to extract butanol. A mechanism for the effects of decanol on product formation is proposed.  相似文献   

3.
End-product conversion, low product concentration and large volumes of fermentation broth, the requirements for large bioreactors, in addition to the high cost involved in generating the steam required to distil fermentation products from the broth largely contributed to the decline in fermentative products. These considerations have motivated the study of organic extractants as a means to remove the product during fermentation and minimize downstream recovery. The aim of this study is to assess the practical applicability of liquid–liquid extraction in 2,3-butanediol fermentations. Eighteen organic solvents were screened to determine their biocompatibility, and bioavailability for their effects on Klebsiella pneumoniae growth. Candidate solvents at first were screened in shake flasks for toxicity to K. pneumoniae. Cell density and substrate consumption were used as measures of cell toxicity. The possibility of employing oleyl alcohol as an extraction solvent to enhance end product in 2,3-butanediol fermentation was evaluated. Fermentation was carried out at an initial glucose concentration of 80 g/l. Oleyl alcohol did not inhibit the growth of the fermentative organism. 2,3-Butanediol production increased from 17.9 g/l (in conventional fermentation) to 23.01 g/l (in extractive fermentation). Applying oleyl alcohol as the extraction solvent, about 68% of the total 2,3-butanediol produced was extracted. An erratum to this article can be found at  相似文献   

4.
Several compounds that are formed or released during hydrolysis of lignocellulosic biomass inhibit the fermentation of the hydrolysate. The use of a liquid extractive agent is suggested as a method for removal of these fermentation inhibitors. The method can be applied before or during the fermentation. For a series of alkanes and alcohols, partition coefficients were measured at low concentrations of the inhibiting compounds furfural, hydroxymethyl furfural, vanillin, syringaldehyde, coniferyl aldehyde, acetic acid, as well as for ethanol as the fermentation product. Carbon dioxide production was measured during fermentation in the presence of each organic solvent to indicate its biocompatibility. The feasibility of extractive fermentation of hydrolysate was investigated by ethanolic glucose fermentation in synthetic medium containing several concentrations of furfural and vanillin and in the presence of decanol, oleyl alcohol and oleic acid. Volumetric ethanol productivity with 6 g/L vanillin in the medium increased twofold with 30% volume oleyl alcohol. Decanol showed interesting extractive properties for most fermentation inhibiting compounds, but it is not suitable for in situ application due to its poor biocompatibility. Biotechnol. Bioeng. 2009;102: 1354–1360. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
Mathematical formulation was made for the performance evaluation of extractive fermentation using multiple solvents. Two types of solvent-supplying strategies were considered. One is to add multiple solvents simultaneously and the product is removed at one time. Another is to add them one by one consecutively. Computer simulation was made for batch, fed-batch, and repeated fed-batch operation of acetone-butanol fermentation to show the power of the approach. The result shows that the significant performance improvement in terms of the productivity and the product concentration is expected when two extractants such as oleyl alcohol and benzyl benzoate are used as compared with the case of using only one solvent.  相似文献   

6.
Extractive microbial fermentation for production of lipase by Serratia marcescens ECU1010 has been carried out in cloud point system. The cloud point system is composed of mixture nonionic surfactants with a ratio of Triton X-114 to Triton X-45 4:1 in aqueous solution. The lipase prefers to partition into the surfactant rich phase (coacervate phase) whereas the cells and other hydrophilic proteins retain in the dilute phase of cloud point system. Thus, a concentration factor 4.2-fold and a purification factor 1.3-fold of the lipase have been achieved in the extractive fermentation process. This is the first report about extractive fermentation of proteins in cloud point system.  相似文献   

7.
Corn stover was fermented by anaerobic acidogenic bacteria to produce volatile (C2–C6) organic acids. Mild pretreatment with dilute alkali solutions produced a two-fold increase in fermentability. A mixture of lime and sodium carbonate was found to be a better pretreatment agent than sodium hydroxide. Methane generation was inhibited by low temperature (? 25°C) and high solids [≥ 2.5% (w/v)] fermentation. Volatile acid yields of 0.5–0.55 g acetic acid equiv/g dry ash-free (DAF) stover could be obtained in batch fermentations. Several extractants and extraction solvents for organic acids were found to be nontoxic to acidogenic fermentation. The data show that acidogenic fermentation can produce useful volatile fatty acids in high yields from a complex lignocellulosic feedstock. These fermentations are nonsterile, need no stirring, and are easy to run. Moreover, cellulose, pentosans, and other carbohydrates are directly utilized by acidogenic bacteria. Hence, acidogenic fermentation could be useful in converting biomass to chemical feedstocks and fuel.  相似文献   

8.
Hydrogen sulphide is produced in human large intestine by anaerobic fermentation and may play a pathogenic role. An analytical method for determination of sulphide in whole blood using an extractive alkylation technique was optimised and validated for this purpose. The sample was mixed with organic phase containing pentafluorobenzyl bromide as an alkylating agent. The benzalkonium chloride was used as a phase-transfer catalyst. The quantitative determination was performed using GC-MS technique in selected ion monitoring mode. The blood levels of sulphide of healthy controls were measured (35-80 microM/l). The method is versatile, reproducible (RSD=2.7%) and suitable for research of anaerobic fermentation in vivo.  相似文献   

9.
Summary The addition of an oleyl alcohol extractant to a batch fermentation of glucose byClostridium acetobutylicum resulted in a concentration profile that was distinctly different from the non-extractive control fermentation. The concentration of butyric acid increased and subsequently decreased in the control fermentation. The concentration of butyric acid increased but did not subsequently decrease in the oleyl alcohol extractive fermentation. The production of butyric acid was found to have been prolonged into the solventogenic phase in the oleyl alcohol extractive fermentation. Butyric acid was continually replenished from glucose while it was being converted to butanol. Supplementation of exogenous acetic and butyric acids, the metabolic uncoupler carbonyl cyanide 3-chlorophenylhydrazone, or decanol to the oleyl alcohol extractive fermentation helped to reinstate the normal butyric acid concentration profile. These findings are discussed with respect to the effects of these additives on the pH ofC. acetobutylicum and its importance with regard to the production of butyric acid.  相似文献   

10.
End product inhibition can be reduced by the in situ removal of inhibitory fermentation products as they form. Extractive fermentation, in which an immiscible organic solvent is added to the fermentor in order to extract inhibitory products, was applied to the acetone-butanol fermentation. Six solvents or solvent mixtures were tested in batch extractive fermentations: kerosene, 30 wt% tetradecanol in kerosene, 50 wt% dodecanol in kerosene, oleyl alcohol, 50 wt% oleyl alcohol in a decane fraction and 50 wt% oleyl alcohol in benzyl benzoate. The best results were obtained with oleyl alcohol or a mixture of oleyl alcohol and benzyl benzoate. In normal batch fermentation of Clostridium acetobutylicum, glucose consumption is limited to about 80 kg/m3 due to the accumulation of butanol in the broth. In extractive fermentation using oleyl alcohol or a mixture of oleyl alcohol and benzyl benzoate, over 100 kg/m3 of glucose can be fermented. Removal of butanol from the broth as it formed also increased the rate of butanol production. Maximum volumetric butanol productivity was increased by as much as 60% in extractive fermentation compared to batch fermentation. Butanol productivities obtained in extractive fermentation compare favorably with other in situ product removal fermentations.  相似文献   

11.
目的研究肠球菌FQ15发酵液中的有机酸在不同发酵时间的变化趋势。方法建立反相高效液相色谱法测定此株益生菌发酵液中有机酸的主要成分及其在发酵不同时间的变化趋势。结果丙酸、丙酮酸、乳酸、乙酸的浓度都是在菌体生长处于衰亡期时达到最大值,乳酸随发酵时间的延长浓度明显下降,而乙酸在发酵后期含量呈上升趋势。结论此方法重现性好,精密度高,为研究微生物合成中有机酸种类及变化趋势提供了一种可供参考的快捷分析手段。  相似文献   

12.
Biotechnologically produced succinic acid has the potential to displace maleic acid and its uses and to become an important feedstock for the chemical industry. In addition to optimized production strains and fermentation processes, an efficient separation of succinic acid from the aqueous fermentation broth is indispensable to compete with the current petrochemical production processes. In this context, high molecular weight amines are known to be effective extractants for organic acids. For this reason, as a first step of isolation and purification, the reactive extraction of succinic acid was studied by mixing aqueous succinic acid solutions with 448 different amine–solvent mixtures as extraction agents (mixer-settler studies). The extraction agents consist either of one amine and one solvent (208 reactive extraction systems) or two amines and two solvents (240 reactive extraction systems). Maximum extraction yields of succinic acid from an aqueous solution with 423 mM succinic acid at pH 2.0 were obtained with more than 95% yield with trihexylamine solved in 1-octanol or with dihexylamine and diisooctylamine solved in 1-octanol and 1-hexanol. Applying these optimized reactive extraction systems with Escherichia coli fermentation broth resulted in extraction yields of 78–85% due to the increased ionic strength of the fermentation supernatant and the co-extraction of other organic acids (e.g., lactic acid and acetic acid), which represent typical fermentation byproducts.  相似文献   

13.
在丁醇发酵产溶剂阶段,乙酸和丁酸的生成途径、消耗途径同时存在,各自形成一个闭环路径。本研究利用图论对丁醇发酵中丁醇丙酮质量比进行了理论计算,并对以木薯和玉米为原料的丁醇发酵进行了模拟计算,结果表明:丁酸闭环路径(L2环)的代谢强度是影响丁醇丙酮质量比的主要因素,并且L2环的代谢强度越弱,丁醇丙酮质量比越高;与玉米原料丁醇发酵相比,木薯原料发酵的m(丁醇)/m(丙酮)提高了16.7%。实验结果证实了以上计算结果:在传统发酵、油醇萃取发酵和生物柴油萃取发酵中,以木薯(适时添加酵母浸粉)为原料的发酵批次与以玉米为原料的发酵批次相比,由于其丁酸闭环路径代谢强度较弱,相应发酵方式下丁醇丙酮质量比分别提高了12.9%、61.4%和6.7%,而且两种原料相应发酵方式的丁醇总产量和生产效率基本持平。另外,高丁醇丙酮质量比的木薯发酵所得改良型生物柴油中丁醇浓度与玉米发酵的相比提高了16%,性能得到进一步提高。  相似文献   

14.
Gibberelic acid fermentation using extractive methods was carried out in the presence of corn oil and Alamine 336. Gibberella fujikuroi fungus (NRRL 2278) was used to produce gibberellic acid. Oleyl alcohol was a diluting agent for Alamine 336. The effects of oleyl alcohol (100%, v/v), corn oil (5–25%, v/v), the concentration of Alamine 336 in oleyl alcohol, and feeding air were examined in this study. According to the results, oleyl alcohol was not effective on the production. On the other hand, oleyl alcohol solutions containing 15–30% (v/v) Alamine 336 showed effects as a toxic substance. In order to reduce solvent toxicity, corn oil was used. Addition of corn oil increased the concentration of gibberellic acid 1.3-fold compared to the control. Then the effects of immobilization and co-immobilization on extractive gibberelic acid fermentation were investigated. The highest total gibberellic acid concentration of 158.9 mg/L was produced with immobilized cells and feeding air by using extractive fermentation. The yield of gibberellic acid increased about 2.6-fold compared with the shake-flask fermentation (60.5 mg/L) without organic solutions.  相似文献   

15.
The separation of inhibitory compounds as they are produced in biotransformation and fermentation systems is termed in situ product removal (ISPR). This review examines recent ISPR strategies employing several classes of extractants including liquids, solids, gases, and combined extraction systems. Improvement through the simple application of an auxiliary phase are tabulated and summarized to indicate the breadth of recent ISPR activities. Studies within the past 5 years that have highlighted and have discussed “second phase” properties, and that have an effect on fermentation performance, are particular focus of this review. ISPR, as a demonstrably effective processing strategy, continues to be widely adopted as more applications are explored; however, focus on the properties of extractants and their rational selection based on first principle considerations will likely be key to successfully applying ISPR to more challenging target molecules.  相似文献   

16.
不同发酵条件下产甘油假丝酵母有机酸代谢的研究   总被引:3,自引:0,他引:3  
产甘油假丝酵母 (Candidaglycerolgenesis)发酵产生的有机酸对丙三醇产品质量和产率均有影响。发现在发酵其它条件恒定 ,装液比和玉米浆浓度增加时 ,发酵液总酸是递增的。在装液比为 0 2和玉米浆浓度为 8g L时 ,丙酮酸和乳酸在细胞生长期可分别积累达 4 1g L和 1 0g L ,比正常发酵时增加 2倍以上 ,丙三醇产率也低 ;然而 ,装液比为 0 0 8和玉米浆浓度为 4g L时 ,丙酮酸和乳酸产生较低 ,丙三醇产率较高 ,但乙酸积累比供氧不足时高 ,可达 2 6g L。发酵过程中有机酸被细胞代谢 ,含量逐渐下降 ,如在初糖浓度为 1 0 0g L时 ,有机酸在细胞生长期积累至高峰后 ,丙三醇和有机酸随之均降低至较低含量 ,并且丙酮酸或乳酸可以转化为乙酸。此外 ,在外加一些添加剂时对其产生有机酸也有影响 ,如添加 1 %油酸和VB1时可以降低乙酸的积累 ,同时增加丙酮酸的含量 ,丙三醇产量也有所增加 ;而丙酮酸结构类似物氟代丙酮酸和亚硫酸盐促进乙酸的产生 ,使酮戊二酸合成减少 ,丙三醇产量约增加 2 0 %。  相似文献   

17.
Summary Fifteen organic solvents were examined to determine their biocompatibility for in situ extraction of fermentation products from cultures of the thermophilic anaerobeClostridium thermohydrosul furicum. Five solvents (hexadecane, isooctane, kerosene, oleyl alcohol, Shellsol TD) were found to be non-toxic toClostridium thermohydrosul furicum. Interfacial tensions, phase separation and partition coefficients for ethanol of the biocompatible solvents were compared. With the exception of kerosene, these solvents showed good separation from the aqueous phase. Oleyl alcohol had the highest partition coefficient for ethanol (KD=0.34 at 65°C) and appears to be suitable for extractive ethanol fermentation.  相似文献   

18.
A novel extractive fermentation procedure, tentatively named an extractive liquid-surface immobilization (Ext-LSI) system, for the production of water-insoluble secondary metabolites with fungi was developed. The system using a unique polymeric micro-material, a ballooned polyacrylonitrile microshpere (MS), was applied to the production of 6-pentyl-α-pyrone (6PP), a fungicidal secondary metabolite, with a newly isolated Trichoderma atroviride AG2755-5 and its nitrosoguanidine (NTG)-mutant. The resulted mutant AG2755-5NM398 was immobilized on the surface of a liquid medium by using the MS. Following the formation of a fungus-MS mat, low toxic hydrophobic solvent, dimethyl silicone oil, was added onto the fungus-MS mat. The optimum carbon and nitrogen sources were fructose and malt extract, respectively. The higher the initial medium pH, the more the 6PP-accumulation was observed. The best MS and extractive organic solvent were MFL-80SDE (non-coated type) and KF-96L-1CS (dimethyl silicone oil). Thus, produced 6PP was spontaneously extracted from cells to the organic phase to reach 7.1 g L?1 of the accumulation in the organic phase.  相似文献   

19.
For effective microbial lactic acid production using Lactobacillus delbrueckii, two-stage extractive fermentation was examined. Extractants were screened from the viewpoints of a high distribution coefficient for lactic acid and less toxicity toward the microorganism. Even if the extractant showed some toxicity toward the microorganism, it was found that a reduction of toxicity was possible by back-extraction using oleyl alcohol. As a result, 40% Alamine 336 diluted with oleyl alcohol, and oleyl alcohol, were selected as the extractant and the back-extractant, respectively. After two-stage extraction by these extractants, the growth rate was improved by the removal of lactic acid. This method was then applied to continuous extractive fermentation using a jar-fermentor. During 4-h extraction, lactic acid accumulation in the broth was significantly suppressed, while the cell growth and glucose consumption rates were also found not to be reduced. After 24 h, the cell concentration attained an OD660 of 14, which corresponded to a level 1.25 times higher than that of the control culture without extraction. Total lactic acid productivity was 1.4 times level compared with the control culture.  相似文献   

20.
Toxicity of organic extraction reagents to anaerobic bacteria   总被引:1,自引:0,他引:1  
Various forms of liquid-liquid extraction systems are being developed to separate products, such as ethanol and volatile fatty acids (VFA), from fermentation liquids, since distillation is energetically expensive. Continuous extraction is advantageous, as product inhibition of the fermentation is minimized. However, some extraction solvents may be toxic or inhibitory to microorganisms.Thirty organic chemicals were examined by means of a small scale (60 mL) batch fermentation bioassay procedure for their toxicity to a commercial inoculum (Methanobac, W.B.E. Ltd.), which was a mixed culture of facultatively anaerobic, acid-producing bacteria. Gas production, pH change of medium, and the concentrations of ethanol, VFA, and lactic acid were measured after 75 h growth. The optimum experimental conditions for toxicity testing were alfalfa as substrate (2 g), a buffered nutrient medium (pH 6.8), "Methanobac" inoculum (10 mL), and test chemicals at levels between 10 and 100 muL/mL.Thirteen chemicals were nontoxic, and included the paraffins (C(6)-C(12)), phthalates, organophosphorus compounds, Freon 113 (1,1,2-trichloro-1,2,2-trifluoro ethane), Aliquat 336 (tricaprylylmethyl ammonium chloride), di-isoamyl ether, and trioctylamine. Other amine extractants were partially toxic. Alcohols (C(5)-C(12)), ketones (C(5)-C(8)), benzene derivatives, isoamyl acetate, and di-isopropyl ether were toxic. Generally, the chemicals were not toxic unless present at levels in excess of that expected to be required to saturate the aqueous phase.Total gas production was a good indicator of toxicity even within 24 h, but the presence of homofermentative (nongas producing) lactic acid bacteria complicated interpretation."Methanobac" inoculum was compared with an inoculum derived from a rumen culture for four test chemicals. The results were essentially the same. However, the toxicity of a chemical to bacteria is likely to vary considerably between bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号