首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Biotin derivatives of methotrexate and folate (2-(biotinamido)ethyl-1,3'-dithiopropionyldiaminopentyl methotrexate and/or folate), in which carboxyl groups of the functional components are joined by a disulfide-containing spacer, have been synthesized, purified by DEAE-Trisacryl chromatography, and characterized by high pressure liquid chromatography and mass spectrometry. These bifunctional, dissociable probes were utilized for the single-step purification to homogeneity of two folate transport proteins (43 and 39 kDa) from L1210 cells. Treatment of the 39-kDa protein with peptide N-glycosidase F produced a smaller component (32 kDa); the 43-kDa protein, conversely, was unchanged by this procedure. When the 39-kDa transporter in intact cells was labeled with a fluorescein derivative of folate and then treated with phosphoinositol-specific phospholipase C, complete loss of fluorescence was observed. Alternatively, there was no change in fluorescence when the 43-kDa transporter was labeled with a fluorescein derivative of methotrexate and treated with the enzyme. These results indicate that the 43-kDa transporter is a nonglycosylated, integral membrane protein, whereas the 39-kDa counterpart is heavily glycosylated and anchored exofacially to the membrane by a glycosylphosphatidylinositol component.  相似文献   

2.
Biochemical properties of the heat shock or stress proteins of mammalian cells have been investigated using two-dimensional gel electrophoresis and immunological techniques. Of the major mammalian stress proteins (Mr = 72,000, 73,000, and 90,000) and minor stress proteins (Mr = 80,000, 100,000, and 110,000), the 80- and 90-kDa proteins were found to be phosphoproteins in all cell types examined. The 100-kDa protein was found to incorporate phosphate in only some cell types examined. In studies of the metabolic incorporation of mannose into the stress proteins, only the 100-kDa protein was found to be a glycoprotein. Two of the stress proteins, the 80- and 100-kDa species, were found to be identical with the proteins induced in cells grown in the absence of glucose (i.e. the "glucose-regulated proteins"). These same two proteins also were induced in cells treated with the calcium ionophore A23187. To begin examining the intracellular location of these multiregulated proteins, immunofluorescence microscopy studies were carried out using a monoclonal antibody against the 100-kDa stress protein. The antigen was localized primarily with the Golgi apparatus and less prominently with the plasma membrane and nucleus. Heat shock treatment resulted in an increased number of the cells exhibiting a nuclear location of 100 kDa.  相似文献   

3.
ADP-ribosylation reactions in nucleoli of exponentially growing HeLa cells were studied. Isolated nuclei or nucleoli were labeled with 32P-NAD; then the nucleolar proteins were analyzed by 1-dimensional and 2-dimensional polyacrylamide gel electrophoresis (PAGE) and modified proteins were detected by autoradiography. The labeled nucleolar proteins were also chromatographically fractionated on DEAE-cellulose. Electrophoretic analysis of total nucleolar and chromatographically purified proteins revealed that besides nuclear ADP-ribosyltransferase and histones two characteristic nucleolar phosphoproteins numatrin/B23 and nucleolin/C23 were modified by ADP-ribosylation.  相似文献   

4.
Summary A salt-extraction procedure was used to isolate a nucleolar nonhistone protein fraction, containing [32P]phosphoserine, from the nucleoli of Novikoff hepatoma ascites cells. These proteins are similar in amino-acid composition to whole nuclear (chromosomal) nonhistone proteins. DNA-cellulose column chromatography showed that this fraction contains DNA-binding phosphoproteins, some of which will bind only to homologous (Novikoff) nucleolar or nuclear DNA.  相似文献   

5.
Using the immunofluorescence method, sera M-68 and K-43 from patients with autoimmune diseases were shown to stain interphase nuclei and the periphery of mitotic chromosomes of pig embryo kidney cells. Western blotting revealed a polypeptide with a molecular mass of 50 kDa in M-68 serum and polypeptide with a molecular mass 38 kDa in K-43 serum. In the nuclear protein matrix, the antibodies to protein with a molecular mass of 38 kDa stained only the nucleolar periphery, while the antibodies to protein with a molecular mass of 50 kDa stained not only the nucleolar periphery, but also all interphase nuclei. It was shown that, among all components of the nuclear protein matrix (lamina, internuclear network, residual nucleoli), only the nucleolar periphery contained the 38-kDa protein, while the 50-kDa protein was part of the residual nucleolar periphery and participated in the formation of a nuclear-protein network. Both proteins in interphase cell in situ were located in nuclei, but one of them with a molecular mass of 50 kDa was in the form of small, clearly outlined granules, while the other protein (38 kDa) was in the form of small, bright granules on a background of a diffusely stained nucleus. Both proteins also were revealed as a continuous rim around the nucleolar periphery. During all mitotic stages, the 50-kDa protein was seen over the whole chromosomal periphery as a sheath, while the 38-kDa protein formed individual fragments and granules around them. After the decondensation of the nucleus and chromosomes induced by hypotonic treatment, both antibodies stained interphase nuclei diffusely, whereas, in mitotic cells, they stained the surfaces of swollen chromosomes. Polypeptide with a molecular mass of 50 kDa maintained a strong connection with the periphery of the chromosome in the norm during decondensation induced by hypotonic treatment and during subsequent recondensation in isotonic medium, while, during recondensation, protein with a molecular mass of 38 kDa partially lost contact with the chromosome and, at the same time, appeared in the form of granules in the cytoplasm. The obtained data allow one to conclude that nuclear matrix proteins can be transferred with peripheral chromosomal material; similar to the main nucleolar proteins (fibrillarin, B-23, nucleolin, et al.) and some non-nucleolar components of the nuclear protein matrix, they can also have connections of different stabilities with chromosomal periphery.  相似文献   

6.
Using immunofluoresence method, sera M-311 and K-30 obtained from patients with autoimmune disease were shown to stain interphase nuclei and the periphery of chromosomes. Western blotting revealed a polypeptide with mol. mass 27 kDa in serum K-30. Both proteins were localized in the karyoplasm. One of them (27 kDa) has a diffuse form and contains small granules, while the other (40 kDa) is in the form of small clearly outlined granules. Both proteins are also revealed around the nucleolar periphery, making a continental ring, while the main part of the nucleolus remains unstained. During pro- and metaphase, these proteins were associated with the chromosomal periphery: 27 kDa protein formed separate groups, and 40 kDa protein was seen over the whole chromosomal periphery. After nuclear and chromosomal decondensation, induced by hypotonic treatment (15% of culture medium solution), both antibodies stain diffusively interphase nuclei, but in mitotic cells they stained the surface of the swollen chromosomes. After chromatin recondensation in isotonic medium these proteins were localized similarly as in normal cells. Thus, both proteins maintained their association with the periphery of chromosomes. To reveal the nuclear protein matrix, cells were treated with 2M NaCl, DNAase and RNAase A. After this procedure, the antibodies stained only the nucleolar periphery, and no fluorescence in the karyoplasm was seen. It shows that of all the components of the nuclear protein matrix (lamina, internuclear network, residual nucleoli) only 27 and 40 kDa proteins are contained in the nucleolar rim. The data allow to suggest that the nucleolar matrix proteins may be transported to new cell nuclei as part of the peripheral chromosomal material likely as other nucleolar (fibrillarin, B-23, and others) or some non-nuclear components of the nuclear protein matrix are transported.  相似文献   

7.
The efficient extraction of proteins from purified cellular organelles is critical for in vitro analyses, including identification of protein complex members by affinity purification‐based quantitative proteomic approaches. When applied to purified nucleoli, classic nuclear protein extraction methods inefficiently and selectively release only ~50% of proteins. Here, we present a method that can extract up to 90% of nucleolar proteins, and apply it in a quantitative interactomic approach to identify nucleolar interaction partners for a mammalian protein phosphatase.  相似文献   

8.
Corrinoid proteins have been implicated as methyl carriers in methane formation from acetate, yet specific corrinoid proteins methylated by acetate-derived intermediates have not been identified. In the presence of ATP, H2, and bromoethanesulfonic acid, label from 3H- or 2-14C-labeled acetate was incorporated into the protein fraction of cell extracts of Methanosarcina barkeri. Incorporated label was susceptible to photolysis, yielding labeled methane as the anaerobic photolysis product. Size exclusion high-pressure liquid chromatography (HPLC) demonstrated the presence of at least three labeled proteins with native molecular sizes of 480, 200, and 29 kDa, while electrophoresis indicated that four major labeled proteins were present. Dual-label experiments demonstrated that these four proteins were methylated rather than acetylated. Two of the proteins (480 and 29 kDa) contained the majority of radiolabel and were stably methylated. After labeling with [2-14C]acetate, the stable 14CH3-proteins were partially purified, and 14CH3-cofactors were isolated from each protein. UV-visible spectroscopy and HPLC demonstrated these to be methylated corrinoids. When the 480-kDa corrinoid protein was purified to 70% homogeneity, the preparation was found to have subunits of 40 and 30 kDa. The 480-kDa protein but not the 29-kDa protein was methylated during in vitro methanogenesis from acetate and demethylated as methanogenesis ceased, consistent with the involvement of this protein in methane formation.  相似文献   

9.
A mouse monoclonal antibody (AC88) that was raised against the 88-kDa heat-shock protein of the water mold, Achlya ambisexualis, and that cross-reacts with the 90-kDa mammalian heat-shock protein (hsp90), and an antibody against tubulin were used to localize hsp90 and microtubules, respectively, in the same cultured rat endothelial and PtK1 epithelial cells by indirect immunofluorescence. AC88 and tubulin antibodies labeled the same structures in cells at all stages of the cell cycle, regardless of whether cells were permeabilized before or after fixation. Labeling of cell structures by both AC88 and anti-tubulin antibodies was identically affected by treating cells with colcemid. Double labeling with AC88 and anti-tubulin antibodies in interphase and mitotic cells is consistent with the conclusion that all microtubules are labeled and that no subclass of microtubules is preferentially labeled. Fluorescent labeling by AC88 was prevented by preabsorption of the antibody with purified rat hsp90 but was unaffected by preabsorption with purified 6S tubulin dimer. In contrast to AC88, fluorescent labeling by an anti-tubulin antibody was prevented by preabsorption with tubulin dimer but was unaffected by preabsorption with rat hsp90. Western-blot analysis demonstrated no cross-reactivity of AC88 for tubulin and no cross-reactivity of the anti-tubulin antibody for hsp90. A polyclonal antiserum fraction from a rabbit immunized with the 89-kDa heat-shock protein from chicken also labeled the mitotic apparatus in dividing cells and, somewhat less distinctly, fibrous structures in interphase cells. Labeling by hsp89 anti-serum was prevented by absorption with hsp90. AC88 also labeled microtubules in cultured mouse (L929 and 3T3), rat (endothelium and TRST), hamster (CHO) and primate (BSC, COS-1 and HeLa) cell lines. The demonstration of colocalization of hsp90 with microtubules should provide a valuable clue to eventual understanding of the cellular function of this ubiquitous, conserved and abundant stress-response protein.  相似文献   

10.
Localization of phosphoprotein C23 in nucleoli by immunological methods   总被引:9,自引:0,他引:9  
Antiserum to a major phosphorylated nucleolar protein. C23 (MW 103000, pI 5.2) from Novikoff hepatoma was produced in rabbits. By immunodiffusion analysis, the antiserum produced precipitin bands and with various crude extracts of nucleoli, but not with extranucleolar or cytosol fractions. The specificity of the antibody was assessed using acid-urea polyacrylamide gel electropherograms of acid-soluble nucleolar proteins in which the separated proteins were transferred to nitrocellulose sheets. The purified antibody reacted predominantly with protein C23 as visualized by the immunoperoxidase procedure. By the indirect immunofluorescence technique, protein C23 was localized predominantly to nucleoli of Novikoff hepatoma or normal rat liver cells. In Novikoff hepatoma cells, traces of fluorescence were seen near the inner layer of the nuclear envelope. Additional narrow regions of fluorescence extended from the nucleoli into the extranucleolar areas of some Novikoff cells. The nucleolar areas of fluorescence were smaller but brighter in the normal liver than in Novikoff hepatoma, consistent with the small size of rat liver nucleoli. These data indicate that the major location of protein C23 is the nucleolus.  相似文献   

11.
Heat-shock stress causes inactivation and aggregation of various cellular proteins which become further insoluble. Previous studies have shown that the interferon-induced p68 kinase activity was greatly reduced in extracts of heat-shocked HeLa cells, and that the loss of activity was due to a decreased solubility of the enzyme. Here we show that the p68 kinase which is normally evenly distributed in the cytoplasm, aggregates as a thick ring around the nucleus in heat-shocked cells. The 70-kDa constitutive heat-shock proteins are major insolubilized proteins during stress and we find them to colocalize with the p68 kinase after stress. Treatments of cells with drugs which disrupt the cytoskeleton, such as colcemid and cytochalasin E, do not hinder the enzyme insolubilization during heat-shock. On the contrary, heat-protectors such as glycerol and deuterium oxide (D2O) keep the p68 kinase under a soluble and active form during heat-shock stress. Similarly, an attenuation of the insolubilization of this enzyme is observed in cells rendered thermo-tolerant by a previous heat-shock, suggesting that heat-shock proteins may also contribute to the protection. During the recovery period at normal temperature after heat-shock, resolubilization occurs and most of the enzyme is again recovered under an active soluble form.  相似文献   

12.
Human interferons induce a protein of 15,000 daltons in human and bovine cells. This protein is located in the cytoplasm in a soluble form and is induced by concentrations of interferon which induce the antiviral state. Messenger RNA prepared from interferon-treated human and bovine cells contains a mRNA which yields on translation in vitro a protein similar in size to the 15-kDa protein induced by interferon in vivo. The human protein has been purified to homogeneity from interferon-treated human cells by ion-exchange chromatography and reverse-phase high-performance liquid chromatography. A comparison of the peptides generated by V8 protease from the human and bovine 15-kDa proteins reveals that the two proteins are similar but not identical.  相似文献   

13.
Using both electron microscopy and immunological methods, we have characterized a number of changes occurring in rat fibroblasts after heat-shock treatment. Incubation of the cells for 3 h at 42 degrees-43 degrees C resulted in a number of changes within the cytoplasm including: a disruption and fragmentation of the Golgi complex; a modest swelling of the mitochondria and subtle alterations in the packing of the cristae; and alterations in cytoskeletal elements, specifically a collapse and aggregation of the vimentin-containing intermediate filaments around the nucleus. A number of striking changes were also found within the nuclei of the heat-treated cells: (a) We observed the appearance of rod-shaped bodies consisting of densely packed filaments. Using biochemical and immunological methods, these nuclear inclusion bodies were shown to be comprised of actin filaments. (b) Considerable alterations in the integrity of the nucleoli were observed after the heat-shock treatment. Specifically, there appeared to be a general relaxation in the condensation state of the nucleoli, changes in both the number and size of the granular ribonucleoprotein components, and finally a reorganization of the nucleolar fibrillar reticulum. These morphological changes in the integrity of the nucleoli are of significant interest since previous work as well as studies presented here show that two of the mammalian stress proteins, the major stress-induced 72-kD protein and the 110-kD protein, localize within the nucleoli of the cells after heat-shock treatment. We discuss these morphological changes with regards to the known biological and biochemical events that occur in cells after induction of the stress response.  相似文献   

14.
15.
The nomenclature and synthesis of acidic and basic ribosomal proteins of plant cell cultures are described, with special regard to ribosome biosynthesis under control and heat-shock conditions. Assembly and processing of preribosomes in the nucleolus require a defined set of ribosomal proteins binding to the nascent pre-rRNA chain. Others are added later on the maturation pathway, mostly in the cytoplasm. Although, under appropriate heat-shock conditions, formation of mature ribosomes is completely blocked, most of the typical ribosomal proteins are still detected in the nuclear fraction. They are constituents of heat-shock preribosomes, which can be processed to normal cytoplasmic ribosomes only if the cells are allowed to recover at 25°C shortly after the labeling period at 40°C. However, if hyperthermic conditions are maintained, the labeled pre-rRNP material is evidently partly broken down. It forms the growing amount of RNP granules (ribosomal wastage) characteristic of the dispersed nucleolus of heat-shocked cells. In addition to the ‘nucleolar’ ribosomal proteins, a few newly formed ribosomal proteins can also be detected in cytoplasmic ribosomes under heat-shock conditions. Most of them belong to the group of exchange proteins whose labeling continues even if pre-rRNA synthesis is blocked by actinomycin D.  相似文献   

16.
17.
Functional human insulin-degrading enzyme can be expressed in bacteria   总被引:4,自引:0,他引:4  
Insulin-degrading enzyme (IDE) has been shown to degrade a number of biologically important peptides, including insulin and the amyloid-beta protein implicated in Alzheimer's disease. However, lack of a facile method to generate purified enzyme and related mutants has made it difficult to study the precise role of IDE in the clearance of these peptides. Therefore, we determined whether recombinant wild-type and mutant human IDEs can be overexpressed as functional enzymes in bacteria. Three vectors carrying cDNAs encoding N-terminally polyhistidine-tagged recombinant IDEs were constructed, and the proteins expressed in Escherichia coli were purified by metal affinity chromatography (final yield approximately 8 mg per liter of culture). The recombinant IDEs, like the endogenous mammalian enzyme, migrate with 110-kDa apparent molecular masses in SDS-polyacrylamide gels and as a approximately 200-kDa species in gel filtration. Further analysis by native PAGE indicates that IDE can form multimers of different complexities. The wild-type recombinant endopeptidase degrades insulin with an efficiency similar to that of the enzyme purified from mammalian tissues. Purified IDEs are stable at 4 degrees C for at least 1 month. Purified recombinant protein was used to raise specific polyclonal antibodies that can immunoprecipitate native mammalian IDE. Thus, the procedure described allows the rapid production of large amounts of purified IDE and demonstrates that IDE can be produced in an active form in the absence of other potential interacting mammalian proteins.  相似文献   

18.
Lack of heat-shock response in preovulatory mouse oocytes   总被引:5,自引:0,他引:5  
The response to heat (hs response) of preovulatory mouse oocytes was compared with that of mouse granulosa cells and characterized in regard to in vitro resumption of meiosis, amino acid incorporation into total protein, and qualitative analysis of protein synthesized before and after the shock. Granulosa cells displayed a hs response typical of other mammalian systems. When incubated at 43 degrees C for 20-40 min, these cells maintained a normal level of amino acid incorporation into total protein, responded to stress by new synthesis of 33- and 68-kDa heat-shock proteins (hsps), and enhanced synthesis of 70-kDa heat-shock cognate protein (hsc70) and of 89- and 110-kDa hsps. In contrast to granulosa cells, preovulatory mouse oocytes were very sensitive to hyperthermia. Incubation at 43 degrees C for 20-40 min strongly inhibited oocyte resumption of meiosis and protein synthesis and did not induce a new or enhanced synthesis of hsps. Unstressed preovulatory mouse oocytes constitutively synthesized 70- and 89-kDa polypeptides resembling hsc70 and hsp89 of granulosa cells.  相似文献   

19.
《The Journal of cell biology》1988,106(4):1105-1116
Exposure of mammalian cells to a nonlethal heat-shock treatment, followed by a recovery period at 37 degrees C, results in increased cell survival after a subsequent and otherwise lethal heat-shock treatment. Here we characterize this phenomenon, termed acquired thermotolerance, at the level of translation. In a number of different mammalian cell lines given a severe 45 degrees C/30-min shock and then returned to 37 degrees C, protein synthesis was completely inhibited for as long as 5 h. Upon resumption of translational activity, there was a marked induction of heat-shock (or stress) protein synthesis, which continued for several hours. In contrast, cells first made thermotolerant (by a pretreatment consisting of a 43 degrees C/1.5-h shock and further recovery at 37 degrees C) and then presented with the 45 degrees C/30-min shock exhibited considerably less translational inhibition and an overall reduction in the amount of subsequent stress protein synthesis. The acquisition and duration of such "translational tolerance" was correlated with the expression, accumulation, and relative half-lives of the major stress proteins of 72 and 73 kD. Other agents that induce the synthesis of the stress proteins, such as sodium arsenite, similarly resulted in the acquisition of translational tolerance. The probable role of the stress proteins in the acquisition of translational tolerance was further indicated by the inability of the amino acid analogue, L-azetidine 2-carboxylic acid, an inducer of nonfunctional stress proteins, to render cells translationally tolerant. If, however, analogue-treated cells were allowed to recover in normal medium, and hence produce functional stress proteins, full translational tolerance was observed. Finally, we present data indicating that the 72- and 73-kD stress proteins, in contrast to the other major stress proteins (of 110, 90, and 28 kD), are subject to strict regulation in the stressed cell. Quantitation of 72- and 73-kD synthesis after heat-shock treatment under a number of conditions revealed that "titration" of 72/73-kD synthesis in response to stress may represent a mechanism by which the cell monitors its local growth environment.  相似文献   

20.
We describe the biochemical characterization and purification of the small 28,000-dalton heat shock protein (28-kDa protein) of mammalian cells. Metabolic pulse labeling of heat shock-treated cells with either [3H]leucine or H3 32PO4 and analysis of the labeled proteins by two-dimensional gel electrophoresis revealed increased levels of three 28-kDa proteins differing only in their relative isoelectric point. Using both peptide mapping and immunological analysis, we demonstrate that all three proteins are related isoforms, with two of the isoforms containing phosphate. Cell fractionation studies revealed that the 28-kDa protein localizes predominantly within the nuclear pellet very shortly after the heat shock treatment. With increasing times of recovery of the heat-treated cells back at 37 degrees C, the majority of the 28-kDa protein was now observed to fractionate within the soluble fraction of the cells. Both gel filtration and velocity sedimentation studies revealed that the 28-kDA protein exists as a higher order structure with an approximate S20,w value of 10-18 S, a Stokes radius of about 60-70 A, and an estimated native molecular mass of at least 500,000 daltons. We describe a relatively simple and rapid purification of the proteins employing both ion-exchange and gel filtration chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号