首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thirty-nine mutant tryptophan synthase alpha subunits have been purified and analyzed (in the presence of the beta 2-subunit) for their enzymatic (kcat, Km) behavior in the reactions catalyzed by the alpha 2.beta 2 complex, the fully constituted form of this enzyme. The mutant alpha subunits, obtained by in vitro random, saturation mutagenesis of the encoding trpA gene, contain single amino acid substitutions at sites within the first 121 residues of the alpha polypeptide. Four categories of altered residues have been tentatively assigned roles in the catalytic functions of this enzyme: 1) catalytic residues (Glu49 and Asp60); 2) residues involved in substrate binding or orientation (Phe22, Thr63, Gln65, Tyr102, and Leu105); 3) residues involved in alpha.beta subunit interactions (Gly51, Pro53, Asp56, Asp60, Pro62, Ala67, Phe72, Thr77, Pro78, Tyr102, Asn104, Leu105, and Asn108); and 4) residues with no apparent catalytic roles. Catalytic residue alterations result in no detectable activity in the alpha-subunit specific reactions. Substrate binding/orientation roles are detected enzymatically primarily as rate defects; alterations only at Tyr102 result in apparent Km effects. alpha.beta interaction roles are detected as rate defects in all tryptophan synthase reactions plus Km increases for the alpha-subunit substrate, indole-3-glycerol phosphate, only when L-serine is present at the beta 2-subunit active site. A substitution at only one site, Asn104, appears to be unique in its potential effect on intersubunit channeling of indole, the product of the alpha-subunit specific reaction, to the beta 2-subunit active site.  相似文献   

2.
The fluorescence of tyrosine has been used to monitor a folding process of tryptophan synthase alpha-subunit from Escherichia coli, because this protein has 7 tyrosines, but not tryptophan. Here to assess the contribution of each Tyr to fluorescence properties of this protein during folding, mutant proteins in which Tyr was replaced with Phe were analyzed. The result shows that a change of Tyr fluorescence occurring during folding of this protein is contributed to approximately 40% each by Tyr(4) and Tyr(115), and to the remaining approximately 20% by Tyr(173) and Tyr(175). Y173F and Y175F mutant proteins showed an increase in their fluorescence intensity by approximately 40% and approximately 10%, respectively. These increases appear to be due to multiple effects of increased hydrophobicity, quenching effect of nearby residue Glu(49), and/or energy transfer between Tyrs. Two data for Y173F alpha-subunit of urea-induced unfolding equilibrium monitored by UV and fluorescence were different. This result, together with ANS binding and far UV CD, shows that folding intermediate(s) of Y173F alpha-subunit, contrary to that of wild-type, may contain self-inconsistent properties such as more buried hydrophobicity, highly quenched fluorescence, and different dependencies on urea of UV absorbance, suggesting an ensemble of heterogeneous structures.  相似文献   

3.
The alpha-subunit of Escherichia coli tryptophan synthase (aTS), a component of the tryptophan synthase alpha2beta2 complex, is a monomeric 268-residues protein (Mr = 28,600). alphaTS by itself catalyzes the cleavage of indole-3-glycerol phosphate to glyceraldehyde-3-phosphate and indole, which is converted to tryptophan in tryptophan biosynthesis. Wild-type and P28L/Y173F double mutant alpha-subunits were overexpressed in E. coli and crystallized at 298 K by the hanging-drop vapor-diffusion method. X-ray diffraction data were collected to 2.5 angstroms resolution from the wild-type crystals and to 1.8 angstroms from the crystals of the double mutant, since the latter produced better quality diffraction data. The wild-type crystals belonged to the monoclinic space group C2 (a = 155.64 angstroms, b = 44.54 angstroms, c = 71.53 angstroms and beta = 96.39 degrees) and the P28L/Y173F crystals to the monoclinic space group P21 (a = 71.09 angstroms, b = 52.70, c = 71.52 angstroms, and beta = 91.49 degrees). The asymmetric unit of both structures contained two molecules of aTS. Crystal volume per protein mass (V(m)) and solvent content were 2.15 angstroms3 Da(-1) and 42.95% for the wild-type and 2.34 angstroms3 Da(-1) and 47.52% for the double mutant.  相似文献   

4.
Extracts of 19 trpA mutant strains of Escherichia coli were examined for their relative activity in the reversible aldolytic reaction catalyzed by the trpA gene product, the α-subunit of tryptophan synthase, in combination with the β-subunit of this enzyme. The specific activities in this reaction, indoleglycerol-P (InGP) ? indole + glyceraldehyde-3-P, were determined for both the forward reaction (InGP to indole) and the reverse reaction (indole to InGP). The majority of the mutant α-subunits had <10% of the wild-type activity in the forward reaction, as expected since these mutant strains were selected for defects in this reaction. In contrast, the majority of these mutant enzymes had >50% of the wild-type activity in the reverse reaction. Several had 5 to 15% of wild-type specific activity in the forward reaction but 60 to 100% of wild-type specific activity in the reverse reaction. Spontaneous revertant strains, selected for their increased ability to catalyze the forward reaction effectively, contained α-subunits with the expected higher specific activities in the forward reaction but without parallel changes in the reverse reaction activity.  相似文献   

5.
Random chemical mutagenesis, in vitro, of the 5' portion of the Escherichia coli trpA gene has yielded 66 mutant alpha subunits containing single amino acid substitutions at 49 different residue sites within the first 121 residues of the protein; this portion of the alpha subunit contains four of the eight alpha helices and three of the eight beta strands in the protein. Sixty-two of the subunits were examined for their heat stabilities by sensitivity to enzymatic inactivation (52 degrees C for 20 min) in crude extracts and by differential scanning calorimetry (DSC) with 29 purified proteins. The enzymatic activities of mutant alpha subunits that contained amino acid substitutions within the alpha and beta secondary structures were more heat labile than the wild-type alpha subunit. Alterations only in three regions, at or immediately C-terminal to the first three beta strands, were stability neutral or stability enhancing with respect to enzymatic inactivation. Enzymatic thermal inactivation appears to be correlated with the relative accessibility of the substituted residues; stability-neutral mutations are found at accessible residual sites, stability-enhancing mutations at buried sites. DSC analyses showed a similar pattern of stabilization/destabilization as indicated by inactivation studies. Tm differences from the wild-type alpha subunit varied +/- 7.6 degrees C. Eighteen mutant proteins containing alterations in helical and sheet structures had Tm's significantly lower (-1.6 to -7.5 degrees C) than the wild-type Tm (59.5 degrees C). In contrast, 6 mutant alpha subunits with alterations in the regions following beta strands 1 and 3 had increased Tm's (+1.4 to +7.6 degrees C). Because of incomplete thermal reversibilities for many of the mutant alpha subunits, most likely due to identifiable aggregated forms in the unfolded state, reliable differences in thermodynamic stability parameters are not possible. The availability of this group of mutant alpha subunits which clearly contain structural alterations should prove useful in defining the roles of certain residues or sequences in the unfolding/folding pathway for this protein when examined by urea/guaninidine denaturation kinetic analysis.  相似文献   

6.
Certain Escherichia coli tryptophan synthase mutant alpha-subunits encoded from mutagenized trpA-containing plasmids were overexpressed as insoluble aggregates which were seen as large, intracellular inclusion bodies. The insoluble aggregates were solubilized to various degrees by several neutral, chaotropic salts. The order of effectiveness of these salts (KSCN, NaI greater than NaNO3, LiBr greater than CaCl2) followed that for the Hofmeister series. Optimum conditions for the use of KSCN resulted in a maximum 70 to 75% solubilization of the aggregate forms for all mutant alpha-subunits examined. Removal of KSCN by dialysis resulted in the recovery of biological activity and of certain characteristic structural properties. Such salts may be a useful alternative for other recombinant protein aggregates which resist complete renaturation by commonly used treatments with guanidine or urea.  相似文献   

7.
Certain Escherichia coli tryptophan synthase mutant alpha-subunits encoded from mutagenized trpA-containing plasmids were overexpressed as insoluble aggregates which were seen as large, intracellular inclusion bodies. The insoluble aggregates were solubilized to various degrees by several neutral, chaotropic salts. The order of effectiveness of these salts (KSCN, NaI greater than NaNO3, LiBr greater than CaCl2) followed that for the Hofmeister series. Optimum conditions for the use of KSCN resulted in a maximum 70 to 75% solubilization of the aggregate forms for all mutant alpha-subunits examined. Removal of KSCN by dialysis resulted in the recovery of biological activity and of certain characteristic structural properties. Such salts may be a useful alternative for other recombinant protein aggregates which resist complete renaturation by commonly used treatments with guanidine or urea.  相似文献   

8.
A mutagenesis approach was initiated in order to examine further the folding behavior of the alpha-subunit of the Escherichia coli tryptophan synthase. A random single base pair saturation mutagenesis procedure (Myers, R.M., Lerman, L.S., and Maniatis, T. (1985) Science 229, 242-247) was applied in vitro to subcloned fragments of the trpA gene, which codes for this polypeptide. Mutagenesis plasmid vectors were constructed containing three fragments of the trpA gene which together code for about half of the total amino acid residues of the alpha-subunit. The vectors were constructed such that each strand of each trpA fragment could be altered. These trpA fragments were mutagenized in vitro (using nitrous acid, formic acid, hydrazine, and potassium permanganate), and several thousands of mutants have been isolated. Thirty-two mutants, contained within the first two trpA fragments (which encompass the first 206 base pairs of the trpA gene and encode the first 63 residues of the alpha-subunit) have been sequenced. Of these, 20 (63%) contained single base pair alterations, 12 (37%) contained multiple alterations, and 17 (53%) of these base pair alterations resulted in single amino acid substitutions. Selected mutant trpA fragments were subcloned into an overexpression vector in which the trpA gene is controlled by the tac promoter and is inducible by lactose. The kinetics and extent of induction show that after 22 h of induction, the wild-type alpha-subunit constituted about 30% of the total protein. A simple one-step purification procedure for the alpha-subunit is described in which 15 mg of alpha-subunit can be obtained from 200 ml of fully induced cultures. The mutant trpA genes were induced for mutant alpha-subunit expression, and an initial examination of their properties in crude extracts was performed. Of the 17 mutant proteins examined, most were overproduced to levels comparable to that for the wild-type alpha-subunit. An analysis of the apparent stability, beta 2-subunit-activating activity, and intrinsic activity of this group of mutant alpha-subunits suggests that many amino acid alterations have no apparent effect; there is a variety of novel functional defects; and a sequence located near residues 28 through 54 may be particularly critical for the normal folding of the polypeptide.  相似文献   

9.
In vitro mutagenesis of the Escherichia coli trpA gene has yielded 66 mutant tryptophan synthase alpha subunits containing single amino acid substitutions at 49 different residue sites and 29 double and triple amino acid substitutions at 16 additional sites, all within the first 121 residues of the protein. The 66 singly altered mutant alpha subunits encoded from overexpression vectors have been examined for their ability to support growth in trpA mutant host strains and for their enzymatic and stability properties in crude extracts. With the exception of mutant alpha subunits altered at catalytic residue sites Glu-49 and Asp-60, all support growth; this includes those (48 of 66) that have no enzymatic defects and those (18 of 66) that do. The majority of the enzymatically defective mutant alpha subunits have decreased capacities for substrate (indole-3-glycerol phosphate) utilization, typical of the early trpA missense mutants isolated by in vivo selection methods. These defects vary in severity from complete loss of activity for mutant alpha subunits altered at residue positions 49 and 60 to those, altered elsewhere, that are partially (up to 40 to 50%) defective. The complete inactivation of the proteins altered at the two catalytic residue sites suggest that, as found via in vitro site-specific mutagenesis of the Salmonella typhimurium tryptophan synthetase alpha subunit, both residues probably also participate in a push-pull general acid-base catalysis of indole-3-glycerol phosphate breakdown for the E. coli enzyme as well. Other classes of mutant alpha subunits include some novel types that are defective in their functional interaction with the other tryptophan synthetase component, the beta 2 subunit. Also among the mutant alpha subunits, 19 were found altered at one or another of the 34 conserved residue sites in this portion of the alpha polypeptide sequence; surprisingly, 10 of these have wild-type enzymatic activity, and 16 of these can satisfy growth requirements of a trpA mutant host. Heat stability and potential folding-rate alterations are found in both enzymatically active and defective mutant alpha subunits. Tyr-4. Pro-28, Ser-33, Gly-44, Asp-46, Arg-89, Pro-96, and Cys-118 may be important for these properties, especially for folding. Two regions, one near Thr-24 and another near Met-101, have been also tentatively identified as important for increasing stability.  相似文献   

10.
The alpha-subunit of tryptophan synthase (alphaTS) catalyzes the cleavage of indole-3-glycerol phosphate to glyceraldehyde-3-phosphate and indole, which is used to yield the amino acid tryptophan in tryptophan biosynthesis. Here, we report the first crystal structures of wild-type and double-mutant P28L/Y173F alpha-subunit of tryptophan synthase from Escherichia coli at 2.8 and 1.8A resolution, respectively. The structure of wild-type alphaTS from E. coli was similar to that of the alpha(2)beta(2) complex structure from Salmonella typhimurium. As compared with both structures, the conformational changes are mostly in the interface of alpha- and beta-subunits, and the substrate binding region. Two sulfate ions and two glycerol molecules per asymmetric unit bind with the residues in the active sites of the wild-type structure. Contrarily, double-mutant P28L/Y173F structure is highly closed at the window for the substrate binding by the conformational changes. The P28L substitution induces the exposure of hydrophobic amino acids and decreases the secondary structure that causes the aggregation. The Y173F suppresses to transfer a signal from the alpha-subunit core to the alpha-subunit surface involved in interactions with the beta-subunit and increases structural stability.  相似文献   

11.
Guanidine hydrochloride-induced denaturation and thermal denaturation of three kinds of tryptophan synthase alpha subunit have been compared by circular dichroism measurements. The three alpha subunits are from Escherichia coli, Salmonella typhimurium, and an interspecies hybrid in which the C-terminal domain comes from E. coli (alpha-2 domain) and the N-terminal domain comes from S. typhimurium (alpha-1 domain). Analysis of denaturation by guanidine hydrochloride at 25 degrees C showed that the alpha-2 domain of S. typhimurium was more stable than the alpha-2 domain of E. coli, but the alpha-1 domain of S. typhimurium was less stable than the alpha-1 domain of the E. coli protein; overall, the hybrid protein was slightly less stable than the two original proteins. It is concluded that the stability to guanidine hydrochloride denaturation of each of the domains of the interspecies hybrid is similar to the stability of the domain of the species from which it originated. The E. coli protein was more stable to thermal denaturation than the other proteins near the denaturation temperature, but the order of their thermal stability was reversed at 25 degrees C and coincided with that obtained from guanidine hydrochloride-induced denaturation.  相似文献   

12.
The Pseudomonas aeruginosa tryptophan synthase genes, trpA and trpB, which are induced by their substrate indoleglycerol phosphate, were cloned along with their controlling region into the BamHI site of pBR322 to produce the 10.7-megadalton plasmid pZAZ5. SalI partial digestion and ligation yielded a smaller plasmid, pZAZ167, with the chromosomal insert reduced in size from 8.1 to 3.4 megadaltons. Both pZAZ5 and pZAZ167 display Pseudomonas-like regulation of the trpA and trpB genes. Deletion of an EcoRI fragment or a BglII fragment from pZAZ167 yielded plasmids pZAZ168 and pZAZ169; the former expresses trpB but not trpA, and the latter has lost both activities. A deleted form of pZAZ5 designated pZAZ101 was obtained by excising a BglII-BamHI segment and religating the trip gene segment in the opposite orientation. This plasmid expresses trpA and trpB constitutively. The physical maps of these plasmids establish the gene order: promoter-trpB-trpA.  相似文献   

13.
14.
Tryptophan synthase from Escherichia coli (L-serine hydro-lyase (adding indole), EC 4.2.1.20) synthesizes L-trypotophan from indoleglycerol phosphate and L-serine, releasing glyceraldehyde 3-phosphate, or from indole and L-serine. The latter reaction (B reaction), catalyzed either by the beta2 species or by the (alpha2 beta2) complex, has been studied by steady-state methods. A sequential mechanism is indicated. Inhibition experiments with the substrate analogue benzimidazole were carried out in order to distinguish between random and ordered mechanisms. The results are compatible with a random sequential mechanism. The dissociation constants of the enzyme-substrate complexes are evaluated. When catalyzed by the tetrameric complex (alpha2 beta2) the B reaction is inhibited by higher concentrations of the substrate indole. This inhibition does not follow the usual substrate inhibition pattern. The question whether the binding of indole to the alpha-subunit exerts an inhibitory effect on the beta2 species, possibly by reversing the activation by the alpha subunit of the beta2 species, is discussed.  相似文献   

15.
The alpha subunit is bound with negative cooperativity to the holo beta 2 subunit of tryptophan synthase in phosphate buffer. Thus it is feasible to measure separately the rates of formation both of the stable alpha beta 2 subcomplex from beta 2, and of the mature alpha 2 beta 2 complex from alpha beta 2, using stopped-flow techniques. Addition of each alpha subunit proceeds in two steps; an initial alpha beta protomer is formed rapidly, which subsequently isomerizes slowly to the equilibrium state. The rates of dissociation of both the alpha beta 2 and alpha 2 beta 2 complexes were measured by trapping released alpha subunit with enzymically inactive reduced beta 2 subunit. The reversal of the slow isomerization both determines the rate of dissociation, and accounts for the high overall affinity of the beta protomer for the alpha subunit. The data fit to a sequential assembly mechanism consisting of seven protein species and yields values for most of the rate constants and all of the microscopic equilibrium constants. Negative cooperativity arises from a weaker initial binding of the second alpha subunit, as expressed by its larger off-constant, possibly due to steric hindrance. The kinetics of binding of L-serine and indolepropanol phosphate during the assembly process shows that the beta protomer is already partially activated in the initial alpha beta complex. Full activation is achieved in the slow isomerization reaction. In contrast, the alpha subunit gains high affinity for indolepropanol phosphate only in the isomerization reaction. These observations indicate that the isomerization involves synchronous conformation changes of both alpha and beta protomers.  相似文献   

16.
Summary The inherent infidelity of Taq DNA polymerase in the polymerase chain reaction was exploited to produce random mutations in thetrp A gene. Screening of the resulting clones allowed selection of non-interactive mutant subunits retaining their intrinsic catalytic activity. Two single changes responsible for this phenotype were identified by DNA sequencing as: 126 valine (GTG)glutamic acid (GAG) and 128 valine (GTT)aspartic acid (GAT). Three single changes giving a non-interactive phenotype with an impaired intrinsic catalytic activity were identified by DNA sequencing as a66 asparagine (AAC)aspartic acid (GAC); 109lysine (AAA) arginine (AGA); 118 cysteine (TGC)arginine (CGC). Where possible, we individually assessed the importance of these residues in interaction in light of structural information from X-ray crystallography and by intergeneric protein sequence comparison.  相似文献   

17.
18.
Properties of a defined mutant of Escherichia coli thymidylate synthase   总被引:3,自引:0,他引:3  
A mutant of Escherichia coli thymidylate synthase (F3-TS), resulting from the replacement of a tyrosine for a cysteine 50 amino acids from the amino-terminal end, has been purified to homogeneity and found to contain less than 0.2% of the activity of the native enzyme (thyA-TS). Although this protein formed a ternary complex with 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and 5,10-methylenetetrahydrofolate, like the native enzyme, the extent of complex formation was significantly impaired as determined by equilibrium dialysis and circular dichroism. Thus, unlike the native enzyme, where 2 mol of FdUMP were present in each mole of ternary complex, F3-TS contained less than 1 mol of FdUMP/mol of ternary complex. Similarly, the binding of dUMP by F3-TS was greatly diminished relative to thyA-TS, but its binding as well as that of FdUMP could be improved by the presence of either the folate substrate or a tight binding folate analogue, 10-propargyl-5,8-dideazafolate (PDDF). However, despite the fact that PDDF enhanced the binding of FdUMP and dUMP to F3-TS, the binding of PDDF to the mutant enzyme was also greatly impaired. This contrasts with the native enzyme, which, under the same conditions, bound about 2 mol of PDDF/mol of enzyme in the presence or absence of either FdUMP or dUMP. Circular dichroism analyses with PDDF in the presence of dUMP or FdUMP yielded analogous results, but the effects were less dramatic than those obtained by equilibrium dialysis. Evidence in support of a structural difference between thyA-TS and F3-TS was obtained by demonstrating that the latter protein was 15-fold slower in forming a ternary complex with dUMP and PDDF than the former and that the mutant enzyme was less stable than the native enzyme.  相似文献   

19.
This study examined the organization of the Krebs tricarboxylic acid (TCA) cycle by metabolic engineering and high-resolution 13C NMR. The oxidation of [1,2,3-13C]propionate to glutamate via the TCA cycle was measured in wild-type (WT) and a citrate synthase mutant (CS?) strain of Escherichia coli transformed with allosteric E. coli citrate synthase (ECCS) or non-allosteric pig citrate synthase (PCS). The 13C fractional enrichment in glutamate C-2, C-3, and C-4 in ECCS and PCS were similar; although quantitative differences in total citrate synthase activity and total C-4 labeling of glutamate were observed in ECCS and PCS. Allosteric ECCS cells contained 10-fold less total enzyme activity than PCS but only 50% less total labeling in glutamate C-4 and equivalent doubling times. The observed spectra were mathematically fitted using an iterative procedure(TCACALC) and yielded an acetate/succinyl-CoA flux ratio of 10 for both ECCS and PCS, a result that is in agreement with the isotopomer analyses of the 13C spectra of cells presented with [3-13C] propionate or [2-13C]propionate. The results are consistent with the presence of an allosteric citrate synthase in ECCS and a non-allosteric citrate synthase in PCS. The former maintains TCA cycle flux via alternative propionate pathways activated by positive allosteric mechanisms and the latter via elevated enzyme levels.  相似文献   

20.
We describe a mutant of Escherichia coli citrate synthase, CS R319L, in which the arginine residue at position 319 of the sequence has been replaced by leucine. In this mutant, saturation by the substrate acetyl-CoA is changed from sigmoid (Hill parameter = 1.75 +/- 0.2) to hyperbolic (Hill parameter = 1.0 +/- 0.1) and dependence on the activator KCl is greatly reduced. Further mutations at this site and at position 343 (which model building predicts is close enough to allow a side-chain interaction with position 319) are also described. In the wild-type enzyme, the model suggests the possibility of a salt-bridge interaction between Arg-319 (located on the P helix in the small domain) and Glu-343 (in the Q helix in the same domain), but mutation of Glu-343 to Ala (CS E343A) produced a much smaller difference in the kinetic properties than the ARg-319 to Leu mutation did. Small changes in kinetic properties were also obtained with an Arg-319----Glu (CS R319E) mutation. In CS R319L, oxaloacetate, the first substrate to bind, induces an ultraviolet difference spectrum which is obtained with wild-type enzyme only in the presence of KCl. To account for these observations we postulate that wild-type E. coli citrate synthase exists in two conformational states, T and R, which are equilibrium; T state binds NADH, the allosteric inhibitor, while R state binds substrates and can be converted to another substrate-binding state, R', by KCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号