首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lrig1 is the founding member of the Lrig family and has been implicated in the negative regulation of several oncogenic receptor tyrosine kinases including ErbB2. Lrig1 is expressed at low levels in several cancer types but is overexpressed in some prostate and colorectal tumors. Given this heterogeneity, whether Lrig1 functions to suppress or promote tumor growth remains a critical question. Previously, we found that Lrig1 was poorly expressed in ErbB2-positive breast cancer, suggesting that Lrig1 has a growth-inhibitory role in this tumor type. However, breast cancer is a complex disease, with ErbB2-positive tumors accounting for just 25% of all breast cancers. To gain a better understanding of the role of Lrig1 in breast cancer, we examined its expression in estrogen receptor α (ERα)-positive disease which accounts for the majority of breast cancers. We find that Lrig1 is expressed at significantly higher levels in ERα-positive disease than in ERα-negative disease. Our study provides a molecular rationale for Lrig1 enrichment in ERα-positive disease by showing that Lrig1 is a target of ERα. Estrogen stimulates Lrig1 accumulation and disruption of this induction enhances estrogen-dependent tumor cell growth, suggesting that Lrig1 functions as an estrogen-regulated growth suppressor. In addition, we find that Lrig1 expression correlates with prolonged relapse-free survival in ERα-positive breast cancer, identifying Lrig1 as a new prognostic marker in this setting. Finally, we show that ErbB2 activation antagonizes ERα-driven Lrig1 expression, providing a mechanistic explanation for Lrig1 loss in ErbB2-positive breast cancer. This work provides strong evidence for a growth-inhibitory role for Lrig1 in breast cancer.  相似文献   

2.
3.
4.
Girard M  McPherson PS 《FEBS letters》2008,582(6):961-966
We recently identified receptor-mediated endocytosis 8 (RME-8), a DnaJ domain protein localized to endosomes. We now demonstrate that RME-8 depletion leads to decreased levels of epidermal growth factor receptor (EGFR) without influencing receptors that primarily recycle to the plasma membrane. Decreases in EGFR are detected at both surface and intracellular pools and result from increased rates of EGFR degradation. Interestingly, RME-8 depletion also decreases EGFR levels in breast cancer cell lines in which overexpression of the EGFR family member ErbB2 has been shown to protect EGFR from degradation. These data implicate RME-8 in sorting decisions influencing EGFR at the level of endosomes and point to RME-8 as a potential regulatory target in ErbB2-positive breast cancers.  相似文献   

5.
The carboxyterminal domain of the epidermal growth factor receptor (EGFR) – a putative binding site for the ubiquitin ligase Cbl – is the site of serine phosphorylation events which are essential for ligand-dependent EGFR desensitization and degradation. Using a monoclonal antibody (aPS1113) which selectively recognizes the homologous phosphorylated domain in the ErbB2 oncoprotein, we show here that wild-type ErbB2 becomes Ser1113-phosphorylated following treatment of 3T3 cells with growth factors or tyrosine phosphatase inhibitors. In EGFR-overexpressing A431 cells, ligand-inducible aPS1113 immunoreactivity declines more rapidly than other detectable phosphorylation events and is followed by EGFR downregulation. Analysis of 65 ErbB2-expressing primary breast cancers reveals a highly significant relationship between Ser1113 phosphorylation and EGFR overexpression (p < 0.0001) as well as an association with poor prognosis (p = 0.005). We submit that ErbB2 Ser1113 phosphorylation status represents a novel and informative biomarker of cancer cell biology and tumor behavior.  相似文献   

6.
We set out to study the key effectors of resistance and sensitivity to ErbB2 tyrosine kinase inhibitors, such as lapatinib in ErbB2-positive breast and lung cancers. A cell-based in vitro site-directed mutagenesis lapatinib resistance model identified several mutations, including the gatekeeper ErbB2 mutation ErbB2-T798I, as mediating resistance. ErbB2-T798I engineered cell models indeed show resistance to lapatinib but remain sensitive to the irreversible EGFR/ErbB2 inhibitor, PD168393, suggestive of potential alternative treatment strategies to overcome resistance. Gene expression profiling studies identified a select group of downstream targets regulated by ErbB2 signaling and define PHLDA1 as an immediately downregulated gene upon oncogenic ErbB2 signaling inhibition. We find significant down-regulation of PHLDA1 in primary breast cancer and PHLDA1 is statistically significantly less expressed in ErbB2 negative compared with ErbB2 positive tumors consistent with its regulation by ErbB2. Lastly, PHLDA1 overexpression blocks AKT signaling, inhibits cell growth and enhances lapatinib sensitivity further supporting an important negative growth regulator function. Our findings suggest that PHLDA1 might have key inhibitory functions in ErbB2 driven lung and breast cancer cells and a better understanding of its functions might point at novel therapeutic options. In summary, our studies define novel ways of modulating sensitivity and resistance to ErbB2 inhibition in ErbB2-dependent cancers.  相似文献   

7.
8.
9.
Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.  相似文献   

10.

Introduction

Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs.

Method

In the present study, we investigated the functional and mechanistic roles of MUC4 in potentiating pathogenic signals including EGFR family proteins to promote TNBC aggressiveness using in vitro and in vivo studies. Further, we studied the expression of MUC4 in invasive TNBC tissue and normal breast tissue by immunostaining.

Results

MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-γ, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue.

Conclusions

MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling.  相似文献   

11.
Identification of genes that are upregulated during mammary epithelial cell morphogenesis may reveal novel regulators of tumorigenesis. We have demonstrated that gene expression programs in mammary epithelial cells grown in monolayer cultures differ significantly from those in three-dimensional (3D) cultures. We identify a protein tyrosine phosphate, PTPRO, that was upregulated in mature MCF-10A mammary epithelial 3D structures but had low to undetectable levels in monolayer cultures. Downregulation of PTPRO by RNA interference inhibited proliferation arrest during morphogenesis. Low levels of PTPRO expression correlated with reduced survival for breast cancer patients, suggesting a tumor suppressor function. Furthermore, we showed that the receptor tyrosine kinase ErbB2/HER2 is a direct substrate of PTPRO and that loss of PTPRO increased ErbB2-induced cell proliferation and transformation, together with tyrosine phosphorylation of ErbB2. Moreover, in patients with ErbB2-positive breast tumors, low PTPRO expression correlated with poor clinical prognosis compared to ErbB2-positive patients with high levels of PTPRO. Thus, PTPRO is a novel regulator of ErbB2 signaling, a potential tumor suppressor, and a novel prognostic marker for patients with ErbB2-positive breast cancers. We have identified the protein tyrosine phosphatase PTPRO as a regulator of three-dimensional epithelial morphogenesis of mammary epithelial cells and as a regulator of ErbB2-mediated transformation. In addition, we demonstrated that ErbB2 is a direct substrate of PTPRO and that decreased expression of PTPRO predicts poor prognosis for ErbB2-positive breast cancer patients. Thus, our results identify PTPRO as a novel regulator of mammary epithelial transformation, a potential tumor suppressor, and a predictive biomarker for breast cancer.  相似文献   

12.
Proteins are used as prognostic and predictive biomarkers in breast cancer. However, the variability of protein expression within the same tumor is not well studied. The aim of this study was to assess intratumoral heterogeneity in protein expression levels by reverse-phase-protein-arrays (RPPA) (i) within primary breast cancers and (ii) between axillary lymph node metastases from the same patient. Protein was extracted from 106 paraffin-embedded samples from 15 large (≥3 cm) primary invasive breast cancers, including different zones within the primary tumor (peripheral, intermediate, central) as well as 2-5 axillary lymph node metastases in 8 cases. Expression of 35 proteins including 15 phosphorylated proteins representing the HER2, EGFR, and uPA/PAI-1 signaling pathways was assessed using reverse-phase-protein-arrays. All 35 proteins showed considerable intratumoral heterogeneity within primary breast cancers with a mean coefficient of variation (CV) of 31% (range 22-43%). There were no significant differences between phosphorylated (CV 32%) and non-phosphorylated proteins (CV 31%) and in the extent of intratumoral heterogeneity within a defined tumor zone (CV 28%, range 18-38%) or between different tumor zones (CV 24%, range 17-38%). Lymph node metastases from the same patient showed a similar heterogeneity in protein expression (CV 27%, range 18-34%). In comparison, the variation amongst different patients was higher in primary tumors (CV 51%, range 29-98%) and lymph node metastases (CV 65%, range 40-146%). Several proteins showed significant differential expression between different tumor stages, grades, histological subtypes and hormone receptor status. Commonly used protein biomarkers of breast cancer, including proteins from HER2, uPA/PAI-1 and EGFR signaling pathways showed higher than previously reported intratumoral heterogeneity of expression levels both within primary breast cancers and between lymph node metastases from the same patient. Assessment of proteins as diagnostic or prognostic markers may require tumor sampling in several distinct locations to avoid sampling bias.  相似文献   

13.
Breast cancer is a heterogeneous disease that varies in its biology and response to therapy. A foremost threat to patients is tumor invasion and metastasis, with the greatest risk among patients diagnosed with triple‐negative and/or basal‐like breast cancers. A greater understanding of the molecular mechanisms underlying cancer cell spreading is needed as 90% of cancer‐associated deaths result from metastasis. We previously demonstrated that the Tamoxifen‐selected, MCF‐7 derivative, TMX2‐28, lacks expression of estrogen receptor α (ERα) and is highly invasive, yet maintains an epithelial morphology. The present study was designed to further characterize TMX2‐28 cells and elucidate their invasion mechanism. We found that TMX2‐28 cells do not express human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR), in addition to lacking ERα, making the cells triple‐negative. We then determined that TMX2‐28 cells lack expression of active matrix metalloproteinases (MMPs)‐1, MMP‐2, MMP‐9, and other genes involved in epithelial–mesenchymal transition (EMT) suggesting that TMX2‐28 may not utilize mesenchymal invasion. In contrast, TMX2‐28 cells have high expression of Ras Homolog Gene Family Member, A (RhoA), a protein known to play a critical role in amoeboid invasion. Blocking RhoA activity with the RhoA pathway specific inhibitor H‐1152, or a RhoA specific siRNA, resulted in inhibition of invasive behavior. Collectively, these results suggest that TMX2‐28 breast cancer cells exploit a RhoA‐dependent, proteolytic‐independent invasion mechanism. Targeting the RhoA pathway in triple‐negative, basal‐like breast cancers that have a proteolytic‐independent invasion mechanism may provide therapeutic strategies for the treatment of patients with increased risk of metastasis. J. Cell. Biochem. 114: 1385–1394, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
15.
The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem. Antiestrogen-resistant breast cancer often shows increased expression of the epidermal growth factor receptor (EGFR) family members, EGFR and ErbB2. In this report we now show that overexpression of EGFR or activated AKT-2 in MCF-7 cells leads to phosphorylation of Ser167 in the AF-1 domain of ERalpha, enhanced ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of tamoxifen, and resistance to tamoxifen. In contrast, transfection of activated MAPK kinase, an immediate upstream activator of MAPK (ERK 1 and 2) into MCF-7 cells leads to phosphorylation of Ser118 in the AF-1 domain of ERalpha, inhibition of ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of Tam, and maintenance of sensitivity to tamoxifen. Inhibition of AKT by short inhibitory RNA blocked Ser167 phosphorylation in ER and restored tamoxifen sensitivity. However, maximum sensitivity to tamoxifen was observed when both AKT and MAPK were inhibited. Taken together, these data demonstrate that different phosphorylation sites in the AF-1 domain of ERalpha regulate the agonistic and antagonistic actions of tamoxifen in human breast cancer cells.  相似文献   

16.
The metastasis of cancer cells from the site of the primary tumor to distant sites in the body represents the most deadly manifestation of cancer. In order for metastasis to occur, cancer cells need to evade anoikis, which is defined as apoptosis caused by loss of attachment to extracellular matrix (ECM). Signaling from ErbB2 has previously been linked to the evasion of anoikis in breast cancer cells but the precise molecular mechanisms by which ErbB2 blocks anoikis have yet to be unveiled. In this study, we have identified a novel mechanism by which anoikis is inhibited in ErbB2-expressing cells: multicellular aggregation during ECM-detachment. Our data demonstrate that disruption of aggregation in ErbB2-positive cells is sufficient to induce anoikis and that this anoikis inhibition is a result of aggregation-induced stabilization of EGFR and consequent ERK/MAPK survival signaling. Furthermore, these data suggest that ECM-detached ErbB2-expressing cells may be uniquely susceptible to targeted therapy against EGFR and that this sensitivity could be exploited for specific elimination of ECM-detached cancer cells.  相似文献   

17.
The ErbB1 and ErbB2 receptors are oncogenes with therapeutic significance in human cancer, whereas the transforming potential of the related ErbB4 receptor has remained controversial. Here, we have addressed whether four alternatively spliced ErbB4 isoforms differ in regulating cellular responses relevant for tumor growth. We show that the two tumor necrosis factor-α converting enzyme (TACE)-cleavable ErbB4 isoforms (the juxtamembrane [JM]-a isoforms) were overexpressed in a subset of primary human breast cancers together with TACE. The overexpression of the JM-a cytoplasmic (CYT)-2 ErbB4 isoform promoted ErbB4 phosphorylation, survival of interleukin-3-dependent cells, and proliferation of breast cancer cells even in the absence of ligand stimulation, whereas activation of the other three ErbB4 isoforms required ligand stimulation. Ligand-independent cellular responses to ErbB4 JM-a CYT-2 overexpression were regulated by both tyrosine kinase activity and a two-step proteolytic generation of an intracellular receptor fragment involving first a TACE-like proteinase, followed by γ-secretase activity. These data suggest a novel transforming mechanism for the ErbB4 receptor in human breast cancer that is 1) specific for a single receptor isoform and 2) depends on proteinase cleavage and kinase activity but not ligand activation of the receptor.  相似文献   

18.
The anti-tumor function of Stat1 as a regulator of innate immunity and tumor immune surveillance has been long studied and is well understood; however, less clear is its tumor-site specific role. Although Stat1 phosphorylated at tyrosine (Y) 701 and serine (S) 727 is essential for interferon (IFN) signalling, its function in signalling induced in breast cancer cells is not understood. Herein, we show that Stat1 Y701 phosphorylation is increased in human breast tumor cells with elevated levels of ErbB2/HER-2 and in cells transfected with ErbB2/Neu. However, pharmacological inhibition of ErbB2/HER-2 results in the inhibition of Stat1 Y701 phosphorylation indicating an atypical role of phosphorylated Stat1 in the inhibition of ErbB2/HER-2 signalling. Consistent with this notion, we found that Stat1 suppresses tumor development by an activated form of ErbB2/Neu in mouse embryonic fibroblasts in xenograft tumor assays; however, this anti-tumor function of Stat1 does not rely on Y701 and S727 phosphorylation. Experiments with transgenic mice demonstrated that Stat1 acts to suppress Neu-mediated breast tumorigenesis through immune regulatory and tumor-site specific mechanisms. Our data reveal a previous uncharacterized anti-tumor activity of Stat1 in ErbB2/Neu-mediated cell transformation and breast oncogenesis with possible implications in the diagnosis and treatment of ErbB2-positive breast cancers.  相似文献   

19.
Overexpression of ErbB2 has been found in approximately 25-30% of human breast cancers and has been shown to render the cancer cells more resistant to chemotherapy. However, it is not clear whether ErbB2 overexpression renders the cells more resistant to specific anti-cancer drugs or renders the cells more resistant to a broad range of anti-cancer drugs. It is not clear how the function of ErbB2 in drug resistance is related to expression and activation of the other ErbB receptors. In this communication, we showed that several breast cancer cell lines including BT20, BT474, MCF-7, MDA-MB-453, and SKBR-3 cells had a similar pattern of resistance to a broad range of anti-cancer drugs including 5-Fluorouracil, Cytoxan, Doxorubincin, Taxol, and Vinorelbin, suggesting a mechanism of multidrug resistance. High expression of P-glycoprotein and the ErbB receptors contribute to drug resistance of these breast cancer cells; however, overexpression of ErbB2 alone is not a major factor in determining drug resistance. To further determine the role of the ErbB receptors in drug resistance, we selected various NIH 3T3 cell lines that specifically expressed EGF receptor (EGFR), ErbB2, ErbB3, EGFR/ErbB2, EGFR/ErbB3, or ErbB2/ErbB3. A cytotoxicity assay showed that expression of ErbB2 alone did not significantly enhance drug resistance, whereas coexpression of either EGFR or ErbB3 with ErbB2 significantly enhanced drug resistance. Moreover, ErbB2 was highly phosphorylated in NIH 3T3 cells that coexpress ErbB2 with either EGFR or ErbB3, but not in NIH 3T3 cells that express ErbB2 alone. Together, our results suggest that coexpression of EGFR or ErbB3 with ErbB2 induces high phosphorylation of ErbB2 and renders the cells more resistant to various anti-cancer drugs.  相似文献   

20.
Xie H  Lin L  Tong L  Jiang Y  Zheng M  Chen Z  Jiang X  Zhang X  Ren X  Qu W  Yang Y  Wan H  Chen Y  Zuo J  Jiang H  Geng M  Ding J 《PloS one》2011,6(7):e21487
Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR) and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/N(neu) transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h) and sustained (≥24 h) inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号