首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In solitary ascidians the fate of endoderm is determined at a very early stage of development and depends on cytoplasmic factors whose nature has not been determined. We have isolated a member of the NK-2 gene family, Cititf1, from the ascidian Ciona intestinalis, showing high sequence homology to mammalian TITF1. The Cititf1 gene was expressed in all endodermal precursors at the pregastrula and gastrula stages, and is thus the first specific regulatory endodermal marker to be isolated from an ascidian. Cititf1 expression was downregulated at the end of gastrulation to reappear at middle tailbud and larval stages in the most anterior and ventral parts of head endoderm, regions which give rise, after metamorphosis, to the adult endostyle, where Cititf1 mRNA was still present. Microinjection of Cititf1 mRNA into fertilized eggs resulted in tadpole larvae with abnormalities in head-trunk development consequent to the formation of excess endoderm, perhaps due to recruitment of notochord precursors to an endodermal fate. These data suggest that Cititf1 plays an important role in normal endoderm differentiation during ascidian embryogenesis.  相似文献   

2.
3.
4.
In early Ciona embryos, nuclear accumulation of beta-catenin is most probably the first step of endodermal cell specification. If beta-catenin is mis- and/or overexpressed, presumptive notochord cells and epidermal cells change their fates into endodermal cells, whereas if beta-catenin nuclear localization is downregulated by the overexpression of cadherin, the endoderm differentiation is suppressed, accompanied with the differentiation of extra epidermal cells ( Imai, K., Takada, N., Satoh, N. and Satou, Y. (2000) Development 127, 3009-3020). Subtractive hybridization screens of mRNAs between beta-catenin overexpressed embryos and cadherin overexpressed embryos were conducted to identify potential beta-catenin target genes that are responsible for endoderm differentiation in Ciona savignyi embryos. We found that a LIM-homeobox gene (Cs-lhx3), an otx homolog (Cs-otx) and an NK-2 class gene (Cs-ttf1) were among beta-catenin downstream genes. In situ hybridization signals for early zygotic expression of Cs-lhx3 were evident only in the presumptive endodermal cells as early as the 32-cell stage, those of Cs-otx in the mesoendodermal cells at the 32-cell stage and those of Cs-ttf1 in the endodermal cells at the 64-cell stage. Later, Cs-lhx3 was expressed again in a set of neuronal cells in the tailbud embryo, while Cs-otx was expressed in the anterior nervous system of the embryo. Expression of all three genes was upregulated in beta-catenin overexpressed embryos and downregulated in cadherin overexpressed embryos. Injection of morpholino oligonucleotides against Cs-otx did not affect the embryonic endoderm differentiation, although the formation of the central nervous system was suppressed. Injection of Cs-ttf1 morpholino oligonucleotides also failed to suppress the endoderm differentiation, although injection of its synthetic mRNAs resulted in ectopic development of endoderm differentiation marker alkaline phosphatase. By contrast, injection of Cs-lhx3 morpholino oligo suppressed the endodermal cell differentiation and this suppression was rescued by injection of Cs-lhx3 mRNA into eggs. In addition, although injection of delE-Ci-cadherin mRNA into eggs resulted in the suppression of alkaline phosphatase development, injection of delE-Ci-cadherin mRNA with Cs-lhx3 mRNA rescued the alkaline phosphatase development. These results strongly suggest that a LIM-homeobox gene Cs-lhx3 is one of the beta-catenin downstream genes and that its early expression in embryonic endodermal cells is responsible for their differentiation.  相似文献   

5.
6.
7.
In vertebrate embryos, the class I subtype forkhead domain gene HNF-3 is essential for the formation of the endoderm, notochord and overlying ventral neural tube. In ascidian embryos, Brachyury is involved in the formation of the notochord. Although the results of previous studies imply a role of HNF-3 in notochord differentiation in ascidian embryos, no experiments have been carried out to address this issue directly. Therefore the present study examined the developmental role of HNF-3 in ascidian notochord differentiation. When embryos were injected with a low dose of HNF-3 mRNA, their tails were shortened and when embryos were injected with a high dose of HNF-3 mRNA, which was enough to inhibit differentiation of epidermis and muscle, no obvious ectopic differentiation of endoderm or notochord cells was observed. However, co-injection of HNF-3 mRNA along with Brachyury mRNA resulted in ectopic differentiation of notochord cells in the animal hemisphere, suggesting that HNF-3 acts synergistically with Brachyury in ascidian notochord differentiation. Notochord differentiation of the A-line precursor cells depends on inducing signal(s) from endodermal cells, which can be mimicked by bFGF treatment. Treatment of notochord precursor cells isolated from the 32-cell stage embryoswith bFGF resulted in upregulation of both the HNF-3 and Brachyury genes.  相似文献   

8.
Mesodermal tissues arise from diverse cell lineages and molecular strategies in the Ciona embryo. For example, the notochord and mesenchyme are induced by FGF/MAPK signaling, whereas the tail muscles are specified autonomously by the localized determinant, Macho-1. A unique mesoderm lineage, the trunk lateral cells, develop from a single pair of endomesoderm cells, the A6.3 blastomeres, which form part of the anterior endoderm, hematopoietic mesoderm and muscle derivatives. MAPK signaling is active in the endoderm descendants of A6.3, but is absent from the mesoderm lineage. Inhibition of MAPK signaling results in expanded expression of mesoderm marker genes and loss of endoderm markers, whereas ectopic MAPK activation produces the opposite phenotype: the transformation of mesoderm into endoderm. Evidence is presented that a specific Ephrin signaling molecule, Ci-ephrin-Ad, is required to establish asymmetric MAPK signaling in the endomesoderm. Reducing Ci-ephrin-Ad activity via morpholino injection results in ectopic MAPK signaling and conversion of the mesoderm lineage into endoderm. Conversely, misexpression of Ci-ephrin-Ad in the endoderm induces ectopic activation of mesodermal marker genes. These results extend recent observations regarding the role of Ephrin signaling in the establishment of asymmetric cell fates in the Ciona notochord and neural tube.  相似文献   

9.
In the present study, we addressed the role of (beta)-catenin in the specification of embryonic cells of the ascidians Ciona intestinalis and C. savignyi and obtained the following results: (1) During cleavages, (beta)-catenin accumulated in the nuclei of vegetal blastomeres, suggesting that it plays a role in the specification of endoderm. (2) Mis- and/or overexpression of (beta)-catenin induced the development of an endoderm-specific alkaline phosphatase (AP) in presumptive notochord cells and epidermis cells without affecting differentiation of primary lineage muscle cells. (3) Downregulation of (beta)-catenin induced by the overexpression of cadherin resulted in the suppression of endoderm cell differentiation. This suppression was compensated for by the differentiation of extra epidermis cells. (4) Specification of notochord cells did not take place in the absence of endoderm differentiation. Both the overexpression of (beta)-catenin in presumptive notochord cells and the downregulation of (beta)-catenin in presumptive endoderm cells led to the suppression of Brachyury gene expression, resulting in the failure of notochord specification. These results suggest that the accumulation of (beta)-catenin in the nuclei of endoderm progenitor cells is the first step in the process of ascidian endoderm specification.  相似文献   

10.
11.
12.
13.
14.
We present evidence that notochord and muscle differentiation are crucial for morphogenesis of the ascidian tail. We developed a novel approach for embryological manipulation of the developing larval tissues using a simple method to introduce DNA into Ciona intestinalis and the several available tissue-specific promoters. With such promoters, we misexpressed the Xenopus homeobox gene bix in notochord or muscle of Ciona embryos as a means of interfering with development of these tissues. Ciona embryos expressing bix in the notochord from the 64-cell stage develop into larvae with very short tails, in which the notochord precursors fail to intercalate and differentiate. Larvae with mosaic expression of bix have intermediate phenotypes, in which a partial notochord is formed by the precursor cells that did not receive the transgene while the precursors that express the transgene cluster together and fail to undergo any of the cell-shape changes associated with notochord differentiation. Muscle cells adjacent to differentiated notochord cells are properly patterned, while those next to the notochord precursor cells transformed by bix exhibit various patterning defects. In these embryos, the neural tube extends in the tail to form a nerve cord, while the endodermal strand fails to enter the tail region. Similarly, expression of bix in muscle progenitors impairs differentiation of muscle cells, and as a result, notochord cells fail to undergo normal extension movements. Hence, these larvae have a shorter tail, due to a block in the elongation of the notochord. Taken together, these observations suggest that tail formation in ascidian larvae requires not only signaling from notochord to muscle cells, but also a "retrograde" signal from muscle cells to notochord.  相似文献   

15.
16.
17.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   

18.
19.
GATA factors play an essential role in endodermal specification in both protostomes and deuterostomes. In Drosophila, the GATA factor gene serpent (srp) is critical for differentiation of the endoderm. However, the expression of srp disappears around stage 11, which is much earlier than overt differentiation occurs in the midgut, an entirely endodermal organ. We have identified another endoderm-specific Drosophila GATA factor gene, dGATAe. Expression of dGATAe is first detected at stage 8 in the endoderm, and its expression continues in the endodermal midgut throughout the life cycle. srp is required for expression of dGATAe, and misexpression of srp resulted in ectopic dGATAe expression. Embryos that either lacked dGATAe or were injected with double-stranded RNA (dsRNA) corresponding to dGATAe failed to express marker genes that are characteristic of differentiated midgut. Conversely, overexpression of dGATAe induced ectopic expression of endodermal markers even in the absence of srp activity. Transfection of the dGATAe cDNA also induced endodermal markers in Drosophila S2 cells. These studies provide an outline of the genetic pathway that establishes the endoderm in Drosophila. This pathway is triggered by sequential signaling through the maternal torso gene, a terminal gap gene, huckebein (hkb), and finally, two GATA factor genes, srp and dGATAe.  相似文献   

20.
The gastrulating vertebrate embryo develops three germlayers: ectoderm, mesoderm, and endoderm. Zebrafish endoderm differentiation starts with the activation of sox17 by casanova (cas). We report that spg (pou2/Oct4) is essential for endoderm formation. Embryos devoid of maternal and zygotic spg function (MZspg) lack endodermal precursors. Cell transplantations show that spg acts in early endodermal precursors, and cas mRNA-injection into MZspg embryos does not restore endoderm development. spg and cas together are both necessary and sufficient to activate endoderm development, and stimulate expression of a sox17 promoter-luciferase reporter. Endoderm and mesoderm derive from a common origin, mesendoderm. We propose that Spg and Cas commit mesendodermal precursors to an endodermal fate. The joint control of endoderm formation by spg and cas suggests that the endodermal germlayer may be a tissue unit with distinct genetic control, thus adding genetic support to the germlayer concept in metazoan development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号