首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a technique for isolating apoprotein C-III by immunoaffinity chromatography, allowing the measurement of its specific radioactivity in lipoprotein fractions from small plasma samples. IgG specific for apoC-III was purified from goat antisera and bound to Sepharose. One ml of this gel (5 mg of IgG) bound 80-90 micrograms of apoC-III. The specific activity of apoC-III was determined by application of delipidated very low density lipoproteins to 1-ml columns and analysis of the protein eluted at pH 2.5 for mass and radio-activity. The coefficient fo variation for apoC-III specific activity determination from 125I-labeled VLDL was 4.3%. Minimal contamination of the eluates by apoproteins B, E, and C-II was confirmed by radioimmunoassay (0.3-1.2%). Following the injection of autologous 125I-labeled VLDL, specific activity decay curves for VLDL apoC-III were biexponential, with the clearance of apoC-III being slower in hypertriglyceridemic subjects. These affinity columns can be used repeatedly and yield reproducible results. This technique should be useful for simultaneous studies of the turnover of several apoproteins in the same individual following a single injection of labeled autologous lipoprotein.  相似文献   

2.
Metabolic fate of rat and human lipoprotein apoproteins in the rat   总被引:7,自引:0,他引:7  
The fate of (125)I-labeled apolipoproteins was studied in vivo in rats that had received intravenous injections of (125)I-labeled rat HDL and (125)I-labeled human HDL, LDL, and VLDL. Plasma decay curves of rat and human HDL were exponential with similar half-lives in the circulation (11-12 hr). After injection, low molecular weight apolipoproteins (apoLP-alanine of human HDL and fraction HS-3 of rat HDL) were found to redistribute to other lipoproteins, predominantly VLDL. Decay curves of individual HDL proteins were constructed after lipoprotein fractionation, delipidation, and polyacrylamide gel electrophoresis. It was found that the half-lives of the different HDL apoproteins were not identical. A major rat HDL protein (52% of total counts) had a circulating half-life (t((1/2))) of 12.5 hr. Two others had a t((1/2)) of 8-9 hr while the t((1/2)) of several others was 11-12 hr. The t((1/2)) of three well-characterized human HDL apoproteins, apoLP-glutamine I, apoLP-glutamine II, and apoLP-alanine, were 13.5, 9.0, and 15.0 hr, respectively. The fate of (125)I-labeled human VLDL and LDL apoproteins in rats was similar to that described previously in humans. After injection of (125)I-labeled human VLDL into rats, apoLP-glutamic acid and apoLP-alanine rapidly transferred to rat HDL and were lost thereafter from the circulation from both VLDL and HDL. The apoLDL moiety of human VLDL moved metabolically to the LDL density range (d = 1.019-1.063) through a lipoprotein of intermediate density (d = 1.006-1.019).  相似文献   

3.
Discrete apolipoprotein E-containing lipoproteins can be identified when EDTA plasma is fractionated on columns of 4% agarose. The present study has demonstrated, by physical and metabolic criteria, that these apolipoprotein E-containing lipoprotein subclasses may be further isolated by immunoaffinity chromatography. Whole plasma was first bound to an anti-apolipoprotein E immunoadsorbent prior to gel filtration on 4% agarose. After elution from the affinity column and dialysis, the bound fraction was chromatographed on 4% agarose. Discrete subfractions of apolipoprotein E could be demonstrated within elution volumes similar to those observed in the original plasma. When whole plasma was first submitted to gel filtration and the apolipoprotein E-containing lipoproteins of either intermediate- or of high-density lipoprotein (HDL) size were subsequently bound to anti-apolipoprotein E columns, the bound eluted fractions maintained their size and physical properties as shown by electron microscopy and by rechromatography on columns of 4% agarose. The metabolic integrity of apolipoprotein E-containing very-low-density lipoproteins (VLDL) was examined by coinjection into a cynomolgus monkey of 125I-labeled apolipoprotein E-rich and 131I-labeled apolipoprotein E-deficient human VLDL which had been separated by immunoaffinity chromatography. The plasma specific activity time curves of the apolipoprotein B in VLDL, intermediate-density (IDL) and low-density (LDL) lipoproteins demonstrated rates of decay and precursor-product relationships similar to those obtained after injection of whole labeled VLDL, supporting the metabolic integrity of VLDL isolated by immunoaffinity chromatography.  相似文献   

4.
The catabolism of human HDL was studied in human hepatoma cell line HepG2. The binding of 125I-labeled HDL at 4 degrees C was time-dependent and reached completion within 2 h. The observed rates of binding of 125I-labeled HDL at 4 degrees C and uptake and degradation at 37 degrees C indicated the presence of both high-affinity and low-affinity binding sites for this lipoprotein density class. The specific binding of 125I-labeled HDL accounted for 55% of the total binding capacity. The lysosomal degradation of 125I-labeled HDL was inhibited 25 and 60% by chloroquine at 50 and 100 microM, respectively. Depolymerization of microtubules by colchicine (1 microM) inhibited the degradation of 125I-labeled HDL by 36%. Incubation of cells with HDL caused no significant change in the cellular cholesterol content or in the de novo sterol synthesis and cholesterol esterification. Binding and degradation of 125I-labeled HDL was not affected by prior incubation of cells with HDL. When added at the same protein concentration, unlabeled VLDL, LDL and HDL had similar inhibitory effects on the degradation of 125I-labeled HDL, irrespective of a short or prolonged incubation time. Reductive methylation of unlabeled HDL had no significant effect on its capacity to inhibit the 125I-labeled HDL degradation. The competition study indicated no correlation between the concentrations of apolipoproteins A-I, A-II, B, C-II, C-III, E and F in VLDL, LDL and HDL and the inhibitory effect of these lipoprotein density classes on the degradation of 125I-labeled HDL. There was, however, some association between the inhibitory effect and the levels of apolipoprotein D and C-I.  相似文献   

5.
There was a rapid transfer of radioactive peptides to other lipoprotein fractions during the first 30 min after the intravenous injection of 125I-labeled rat very low density lipoprotein (VLDL) into rats. After this initial redistribution of radioactivity, label disappeared slowly from all lipoprotein fractions. The disappearance of 125I-labeled human VLDL injected into rats was the same as that of rat VLDL. Most of the radioactivity transferred from VLDL to low density (LDL) and high density (HDL) lipoproteins was associated with two peptides, identified in these studies by polyacrylamide gel electrophoresis as zone IVa and IVb peptides (fast-migrating peptides, possibly analogous to some human C apolipoproteins), although radioactivity initially associated with zone I (analogous to human apolipoprotein B) and zone III (not characterized) was also transferred to LDL and HDL. That the transfer of label from VLDL to LDL and HDL primarily involved small molecular weight peptides was confirmed in studies using VLDL predominantly labeled in these peptides by in vitro transfer from 125I-labeled HDL. Both zone I and zone IV radioactivity was rapidly removed from VLDL during the first 5 min after injection. However, although most of the zone IV radioactivity was recovered in LDL and HDL, only 12% of the label lost from zone I of VLDL was recovered in other lipoproteins, with the remainder presumably having been cleared from the plasma compartment. We have concluded that, during catabolism of rat VLDL apoprotein, there is a rapid transfer of small molecular weight peptides to both LDL and HDL. During the catabolic process, most of the VLDL is rapidly removed from the circulation, with only a small portion being transformed into LDL molecules.  相似文献   

6.
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism.  相似文献   

7.
Apolipoprotein C-III (apoC-III) is an important regulator of lipoprotein metabolism. Radioisotope and stable isotope kinetic studies show differing results in relation to the kinetics of apoC-III in HDL. Kinetic analysis of HDL apoC-III may be difficult because of its low concentration, as well as the presence of other apoproteins at higher concentration, in the HDL fraction. We used Intralipid(R) (IL), known to preferentially extract apoC proteins from plasma, as a means of extracting apoC-III from HDL before apoprotein separation by isoelectric focusing gel electrophoresis for the measurement of tracer enrichment. Protein purity was assessed by an isoleucine-to-leucine (Ile/Leu) ratio, as apoC-III contains no isoleucine. We compared apoC-III kinetics in 14 men using a bolus infusion of deuterated leucine. The Ile/Leu ratio for IL-extracted HDL (IL-HDL) apoC-III (3.0 +/- 0.7%) was not different from that of VLDL apoC-III (2.6 +/- 0.6%) but was significantly lower than that of untreated HDL apoC-III (9.0 +/- 2.9%) (P < 0.001). The isotopic enrichment curves and fractional catabolic rates (FCRs) for IL-HDL apoC-III were not different from those of VLDL apoC-III. In contrast, HDL apoC-III had significantly lower isotopic enrichments and FCRs than IL-HDL apoC-III (P < 0.001). In conclusion, this simple IL method can be used to isolate apoC-III from HDL with minimal interference from other HDL apoproteins, and it demonstrates that the kinetics of apoC-III in VLDL and HDL are similar, supporting the concept of a single kinetically homogeneous pool of apoC-III in plasma.  相似文献   

8.
ApoC-III and apoE are important determinants of intravascular lipolysis and clearance of triglyceride-rich chylomicrons and VLDL from the blood plasma. Interactions of these two apolipoproteins were studied by adding purified human apoC-III to human plasma at levels observed in hypertriglyceridemic subjects and incubating under specific conditions (2 h, 37 degrees C). As plasma concentrations of apoC-III protein were increased, the contents in both VLDL and HDL were also increased. Addition of apoC-III at concentrations up to four times the intrinsic concentration resulted in the decreasing incremental binding of apoC-III to VLDL while HDL bound increasing amounts without evidence of saturation. No changes were found in lipid content or in particle size of any lipoprotein in these experiments. However, distribution of the intrinsic apoE in different lipoprotein particles changed markedly with displacement of apoE from VLDL to HDL. The fraction of VLDL apoE that was displaced from VLDL to HDL at these high apoC-III concentrations varied among individuals from 20% to 100% its intrinsic level. The proportion of VLDL apoE that was tightly bound (0% to 80%) was found to be reproducible and to correlate with several indices of VLDL particle size. In the group of subjects studied, strongly adherent apoE was essentially absent from VLDL particles having an average content of less than 50,000 molecules of triglyceride.Addition of apoC-III to plasma almost completely displaces apoE from small VLDL particles. Larger VLDL contain tightly bound apoE which are not displaced by increasing concentration of apoC-III.  相似文献   

9.
A study was made of the influence of a 3 hour physical loading on the intracellular distribution of 125I-labeled very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL) in the rat tissues after intravenous injection. The uptake of VLDL by liver was decreased, that of LDL was not altered and that uptake of HDL was increased, Redistribution of labeled lipoproteins between the subcellular structures was found. Accumulation of labeled VLDL in cytosol, microsome and large membranes was observed in muscles. The radioactivity level of VLDL was decreased in lysosomes, whereas the level of HDL was increased, Physical loading increased the uptake of HDL in adrenal glands. Accumulation of radioactivity was found in cytosol and small membranes. The data confirm the important role of lipoproteins of cellular metabolism regulation.  相似文献   

10.
The fate of apo C in rat plasma very low density lipoprotein (VLDL) during lipolysis was studied using VLDL labeled specifically with 125I-labeled apo C and purified bovine milk lipoprotein lipase. Incubations were carried out in vitro and included serum-containing systems and albumin containing systems. Free fatty acids generation proceeded with time of incubation in the two systems. It, however, was enhanced 1.5--2 fold by the presence of serum. 125I-labeled apo C equilibrated between very low and high density lipoprotein (HDL) in both systems even when enzyme was not present in the incubation medium, or when the incubation was carried out at 0 degrees C. Upon initiation of lipolysis, more 125I-labeled apo C was transferred to HDL and the transfer was proportional to the magnitude of free fatty acids release. 125I-labeled apo C was also progressively removed from VLDL in the albumin-containing system, although no known lipoprotein acceptor to apo C was present in the medium. The 125I-labeled apo C was recovered predominantly with the medium fraction of d greater than 1.21 g/ml (60--70%), and to a lesser degree with that of d= 1.019--1.21 g/ml. However, the relationship between lipolysis (measured as free fatty acids release) and removal of 125I-labeled apo C from VLDL were indistinguinshable in the albumin containing system and the serum containing system. On the basis of these observations, it is postulated that the removal of apo C during lipolysis of VLDL reflects the nature of the partially degraded VLDL particles, and is independent of the presence of a lipoprotein acceptor to apo C.  相似文献   

11.
Summary The transport of 125I-labeled serum lipoproteins through the aortic endothelium was studied by radioautography. Rat aorta and heart was perfused in vitro with a medium containing human very low density (VLDL), low density (LDL), high density lipoprotein (HDL), delipidated HDL apolipoprotein or rat HDL. In all lipoproteins more than 95% of the radioactivity was TCA precipitable and lipid radioactivity was from 2–4% in HDL, 4–6% in LDL, 7–15% in VLDL. After 18–60 min of perfusion and wash with unlabeled medium, most of the aortic radioactivity was TCA precipitable and the percent of lipid counts was similar to that in the original lipoprotein. Following perfusion with VLDL, LDL, or HDL the radioautographic reaction was seen over the endothelium, the subendothelial space and the inner media, and was separated by an unlabeled zone from the reaction present over the adventitia. Uniform labeling of the entire wall was found after perfusion with HDL apolipoprotein. The presence of silver grains over endothelial cells in regions rich in plasmalemmal vesicles suggested that these organelles participate in the transport of the labeled lipoprotein, as was shown for lactoperoxidase (Stein and Stein, 1972). The present data indicate that cholesterol may enter the aortic wall as a constituent of lipoprotein particles. Since an HDL particle carries less than 1/20 of the cholesterol present in a LDL particle, it seems that the lower susceptibility of the female to atheromatosis might be related to the higher ratio of HDL to LDL particles in the female serum.The excellent technical help of Miss R. Ben-Moshe, Mrs. A. Mandeles, Mr. G. Hollander and Mrs. Y. Dabach is gratefully acknowledged. This study was supported in part by grants from National Institute of Health (No. 06-101-1), United States Public Health Service; Delegation Generale a la Recherche Scientifique et Technique of the French Government and from the Ministry of Health, the Government of Israel.  相似文献   

12.
Three fractionation procedures (immunoaffinity chromatography, two-dimensional nondenaturing electrophoresis, and heparin-agarose affinity chromatography) have been compared in determining the kinetics of free and ester cholesterol transfer in normolipemic native plasma. Similar results were obtained in each case. Cell-derived free cholesterol is initially enriched in high density lipoproteins (HDL) (mainly HDL without apoE); at longer time periods (greater than 10 min) greater proportions are observed in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The major part of cholesteryl ester (about 90%) was retained in HDL, while VLDL and LDL, which contained about 75% of total cholesteryl ester mass, received only about 10% of cell-derived cholesteryl ester. Within HDL, almost all cholesteryl ester was in the apoE-free fraction. These data provide evidence that lipoprotein free and esterified cholesterol are not at chemical equilibrium in normal plasma, and that cell-derived cholesterol is preferentially directed to HDL. The techniques used had a comparable effectiveness for the rapid fractionation of labile lipoprotein lipid radioactivity.  相似文献   

13.
We measured the amount of apoA-I in serum by isotope dilution, finding 1.33 mg/ml (standard deviation 0.177) in six normolipidemic, healthy subjects. We developed this method by adapting published techniques to purify apoA-I from 3 ml of serum in two steps: density gradient ultracentrifugation and high performance liquid chromatography gel filtration. The 125I-labeled apoA-I tracer was first screened, by incubation with serum, to select labeled apoA-I which retained the ability to exchange with native apoA-I and bind to HDL. A known amount of 125I-labeled apoA-I-labeled HDL was added to unknown serum samples; apoA-I was reisolated from the serum and its specific radioactivity was used to calculate the dilution of the added, labeled apoA-I by the unlabeled apoA-I in the unknown serum. By not relying on immunochemical techniques, the isotope dilution assay provided results that are independent of the expression of individual apoA-I antigenic sites. Therefore, sera that have been assayed by isotope dilution can serve as standards to evaluate the accuracy of immunoassays for serum apoA-I and provide primary standards for such immunoassays.  相似文献   

14.
Rats treated with the contraceptive steroid d-norgestrel have lower plasma very low density lipoprotein (VLDL)-triglycerides and higher low density lipoprotein (LDL)-cholesterol than controls. To explain these results, the kinetics of VLDL and LDL turnover were studied by injecting 125I-labeled rat-VLDL and 131I-labeled rat-LDL simultaneously into rats treated with a small dose of d-norgestrel (4 micrograms per day per kg body weight0.75 for 18 days, n = 22) and their untreated controls (n = 22). VLDL- and LDL-apoB specific activity-time curves obtained over 50 hr best conformed to a three-pool model. VLDL-apoB clearance expressed as irreversible catabolic rate (k01) was markedly enhanced in the treated versus control rats (0.57 vs. 0.34 pools hr-1), leading to a marked reduction in VLDL-apoB pool size (270 vs. 420 micrograms). However, VLDL-apoB production rates were similar in the two groups (160 vs. 140 micrograms/hr, respectively). The 125I-labeled apoB specific activity-time curve derived from the catabolism of 125I-labeled VLDL-apoB also showed enhanced clearance in d-norgestrel-treated rats. 125I-Labeled IDL-apoB and 125I-labeled LDL-apoB specific activity-time curves failed to intersect the VLDL-apoB curve at maximal heights, suggesting input of intermediate density lipoprotein (IDL) and LDL independent of VLDL catabolism in both groups. However, the extent of independent LDL-apoB production was similar in both groups. Clearance of 131I-labeled LDL-apoB following injection of 131I-labeled rat-LDL was delayed in the d-norgestrel-treated versus control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

16.
Transfer of apolipoproteins (apo) between the two subpopulations of apo A-I-containing lipoproteins in human plasma: those with A-II [Lp(AI w AII)] and those without [Lp(AI w/o AII)], were studied by observing the transfer of 125I-apo from a radiolabeled subpopulation to an unlabeled subpopulation in vitro. When Lp(AI w AII) was directly radioiodinated, 50.3 +/- 7.4 and 19.5 +/- 7.7% (n = 6) of the total radioactivity was associated with A-I and A-II, respectively. In radioiodinated Lp(AI w/o AII), 71.5 +/- 6.8% (n = 6) of the total radioactivity was A-I-associated. Time-course studies showed that, while some radiolabeled proteins transferred from one population of HDL particles to another within minutes, at least several hours were necessary for transfer to approach equilibrium. Incubation of the subpopulations at equal A-I mass resulted in the transfer of 51.8 +/- 5.0% (n = 4) of total radioactivity from [125I]Lp(AI w/o AII) to Lp(AI w AII) at 37 degrees C in 24 h. The specific activity (S.A.) of A-I in the two subpopulations after incubation was nearly identical. Under similar incubation conditions, only 13.4 +/- 4.6% (n = 4) of total radioactivity was transferred from [125I]Lp(AI w AII) to Lp(AI w/o AII). The S.A. of A-I after incubation was 2-fold higher in particles with A-II than in particles without A-II. These phenomena were also observed with iodinated high-density lipoproteins (HDL) isolated by ultracentrifugation and subsequently subfractionated by immunoaffinity chromatography. However, when Lp(AI w AII) radiolabeled by in vitro exchange with free [125I]A-I was incubated with unlabeled Lp(AI w/o AII), the S.A. of A-I in particles with and without A-II differed by only 18% after incubation. These data are consistent with the following: (1) in both populations of HDL particles, some radiolabeled proteins transferred rapidly (minutes or less), while others transferred slowly (hours); (2) when Lp(AI w AII) and Lp(AI w/o AII) were directly iodinated, all labeled A-I in particles without A-II were transferable, but some labeled AI in particles with A-II were not; (3) when Lp(AI w AII) were labeled by in vitro exchange with [125I]A-I, considerably more labeled A-I were transferable. These observations suggest the presence of non-transferable A-I in Lp(AI w AII).  相似文献   

17.
The uptake of the 125I-labeled apolipoprotein and 3H-labeled cholesteryl ester components of rat apolipoprotein E-deficient HDL by the perfused liver was studied. The uptake of the cholesteryl ester moiety was 4-fold higher than that of apolipoprotein. The concentration-dependent uptake of labeled protein was saturable and competed for by an excess of unlabeled HDL. The uptake of cholesteryl ester was not saturable over the concentration range studied. In the presence of a 50-fold excess of unlabeled HDL, the uptake of both radiolabeled components was decreased by over 75%, indicating that three-quarters of the hepatic uptake of HDL is by a receptor-mediated process. After 15 min of perfusion, 37% of the apolipoprotein radioactivity that was initially bound at 5 min was released into the perfusate as a more dense particle. After 5, 15, 30 and 60 min of perfusion the subcellular distribution of the apolipoprotein and cholesteryl ester components was analyzed by Percoll density gradient centrifugation. Over the 60 min period, there appeared to be transfer of radioactivity from the plasma membrane fraction to the lysosomal fraction. However, the internalization and degradation of cholesteryl ester was more rapid than that of the apolipoprotein. Our findings indicate that there is preferential uptake of HDL cholesteryl ester relative to protein by the liver and that the internalization of these components may occur independently.  相似文献   

18.
Plasma metabolism of apolipoprotein A-IV in humans   总被引:5,自引:0,他引:5  
As assessed by molecular sieve chromatography and quantitation by a specific radioimmunoassay, apoA-IV is associated in plasma with the triglyceride-rich lipoproteins, to a high density lipoprotein (HDL) subfraction of smaller size than HDL3, and to the plasma lipoprotein-free fraction (LFF). In this study, the turnover of apoA-IV associated to the triglyceride-rich lipoproteins, HDL and LFF was investigated in vivo in normal volunteers. Human apoA-IV isolated from the thoracic duct lymph chylomicrons was radioiodinated and incubated with plasma withdrawn from normal volunteers after a fatty meal. Radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, HDL, and LFF were then isolated by chromatography on an AcA 34 column. Shortly after the injection of the radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, most of the radioactivity could be recovered in the HDL and LFF column fractions. On the other hand, when radioiodinated apoA-IV-labeled HDL or LFF were injected, the radioactivity remained with the originally injected fractions at all times. The residence time in plasma of 125I-labeled apoA-IV, when injected in association with HDL or LFF, was 1.61 and 0.55 days, respectively. When 125I-labeled apoA-IV was injected as a free protein, the radioactivity distributed rapidly among the three plasma pools in proportion to their mass. The overall fractional catabolic rate of apoA-IV in plasma was measured in the three normal subjects and averaged 1.56 pools per day. The mean degradation rate of apoA-IV was 8.69 mg/kg X day. The results are consistent with the conclusions that: apoA-IV is present in human plasma in three distinct metabolic pools; apoA-IV associated with the triglyceride-rich lipoproteins is a precursor to the apoA-IV HDL and LFF pools; apoA-IV in LFF is not a free protein and its turnover rate is faster than that of apoA-IV in HDL; since no transfer of apoA-IV from the HDL or the LFF occurs, these pools may represent a terminal pathway for the catabolism of apoA-IV; and the catabolism of apoA-IV in HDL is dissociated from that of apoA-I although both apoproteins may reside on the same lipoprotein particles.  相似文献   

19.
We have investigated the binding of high-density lipoprotein (HDL3, d = 1.12-1.21 g/ml), and apolipoprotein E-deficient human and rat HDL, obtained by heparin-Sepharose affinity chromatography, to intact cells and membrane preparations of rat intestinal mucosal cells. Binding of 125I-labeled HDL3 to the basolateral plasma membranes was characterised by a saturable, specific process (Kd = 21 micrograms of HDL3 protein/ml, Bmax = 660 ng HDL3 protein/mg membrane protein) and E-deficient human HDL demonstrated a similar affinity for the binding site. The basolateral plasma membranes isolated from proximal and distal portion of rat small intestine showed similar binding affinities for HDL3, whereas the interaction of HDL with brush-border membranes was characterised by mainly nonspecific and nonsaturable binding. The binding of 125I-labeled HDL3 to basolateral plasma membranes was competitively inhibited by unlabeled HDL3 but less efficiently by unlabeled human LDL. The putative HDL receptor was not dependent on the presence of divalent cations but was markedly influenced by temperature and sensitive to pronase treatment. We have also demonstrated, using whole intestinal mucosal cells, that lysine and arginine-modified HDL3 inhibited binding of normal 125I-labeled HDL3 to the same extent as normal excess HDL3. These data suggest that basolateral plasma membranes of rat intestinal mucosal cells possess a specific receptor for HDL3 which contains mainly apolipoprotein A-I and A-II, and the mechanisms of recognition of HDL3 differ from those involved in binding to the B/E receptor.  相似文献   

20.
Selective accumulation of low density lipoproteins in damaged arterial wall   总被引:1,自引:0,他引:1  
To determine whether damaged arterial wall selectively accumulates lipoproteins, normocholesterolemic rabbits were injected with human radiolabeled low density lipoproteins, high density lipoproteins, and/or albumin 24 hr to 12 weeks after balloon-catheter de-endothelialization of the abdominal aorta. When 125I-labeled low density lipoproteins and 99mTc-labeled albumin were injected simultaneously, the amount of 125I-low density lipoprotein present 24 hr later in abdominal aortas increased steadily, for several weeks, above the amount present at 24 hr in control animals. The increase correlated closely with the degree of re-endothelialization and correlated closely with the degree of re-endothelialization and reached an average maximum for the whole abdominal aorta of three times control when re-endothelialization was between 75 and 85% complete. By contrast, the amounts of 99mTc-albumin or 125I-labeled high density lipoprotein in balloon-damaged abdominal aortas, and the amounts of 125I-low density lipoprotein, 125I-high density lipoprotein, or 99mTc-albumin in undamaged thoracic aortas of injured animals showed no such increase. As early as 2 weeks after de-endothelialization, en face radioautographs made following injection of 125I-labeled low density lipoproteins revealed localized areas of greatest radioactivity around the leading edges of regenerating endothelial islands, broad areas of intermediate radioactivity corresponding to the de-endothelialized areas, and very like radioactivity in the re-endothelialized areas. This pattern occurred rarely with 125I-labeled high density lipoproteins and not at all with 125I-labeled albumin. The results suggest that low density lipoproteins are selectively accumulated by the healing rabbit aorta and that the accumulation is greatest in regions where the endothelium is actively regenerating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号