共查询到20条相似文献,搜索用时 15 毫秒
1.
Blake JM Nicoud IB Weber D Voorhies H Guthrie KA Heimfeld S Delaney C 《Cytotherapy》2012,14(7):818-822
Background aimsCD34+ enrichment from cord blood units (CBU) is used increasingly in clinical applications involving ex vivo expansion. The CliniMACS instrument from Miltenyi Biotec is a current good manufacturing practice (cGMP) immunomagnetic selection system primarily designed for processing larger numbers of cells: a standard tubing set (TS) can process a maximum of 60 billion cells, while the larger capacity tubing set (LS) will handle 120 billion cells. In comparison, most CBU contain only 1–2 billion cells, raising a question regarding the optimal tubing set for CBU CD34+ enrichment. We compared CD34+ cell recovery and overall viability after CliniMACS processing of fresh CBU with either TS or LS.MethodsForty-six freshly collected CBU (≤ 36 h) were processed for CD34+ enrichment; 22 consecutive units were selected using TS and a subsequent 24 processed with LS. Cell counts and immunophenotyping were performed pre- and post-selection to assess total nucleated cells (TNC), viability and CD34+ cell content.ResultsTwo-sample t-tests of mean CD34+ recovery and viability revealed significant differences in favor of LS (CD34+ recovery, LS = 56%, TS = 45%, P = 0.003; viability, LS = 74%, TS = 59%, P = 0.011). Stepwise linear regression, considering pre-processing unit age, viability, TNC and CD34+ purity, demonstrated statistically significant correlations only with the tubing set used and age of unit.ConclusionsFor CD34+ enrichment from fresh CBU, LS provided higher post-selection viability and more efficient recovery. In this case, a lower maximum TNC specification of TS was not predictive of better performance. The same may hold for smaller scale enrichment of other cell types with the CliniMACS instrument. 相似文献
2.
Dimitriou H Bakogeorgou E Kampa M Notas G Stiakaki E Kouroumalis E Kalmanti M Castanas E 《Cytotherapy》2006,8(4):367-374
BACKGROUND: Opioid agonists have been shown to exert an inhibitory action on a number of malignant and non-malignant cell types. However, there are no reports dealing with their effect on hemopoietic progenitors. Based upon our previous experience of opioid agonists we examined whether opioids could interfere with the growth of CFU-GM from CD133(+) cord blood cells. METHODS: Cord blood samples were subjected to CD133(+) column selection, with subsequent exposure to opioid agonists and antagonists or both, in semi-solid cultures for CFU-GM growth. Colonies of day 7 of culture were replated in fresh medium in the absence of opioids. The colonies were evaluated at 7 and 14 days of culture. RT-PCR was performed for the detection of opioid and somatostatin receptors. Apoptosis tests and immunophenotypic evaluations were employed in liquid cultures in conditions identical to those of the semi-solid ones. RESULTS AND DISCUSSION: Our results suggest that opioids can induce a significant inhibition of CFU-GM growth, which is reversible and not mediated through opioid or somatostatin receptors, while apoptosis is not implicated. Whether this finding could be used for clinical intervention remains to be examined. 相似文献
3.
CD4(+) Epstein-Barr virus-specific cytotoxic T-lymphocytes from human umbilical cord blood. 总被引:6,自引:0,他引:6
Umbilical cord blood (CB) is increasingly used for allogeneic hematopoietic stem cell transplantation. To determine whether viral antigen-specific cytotoxic T-lymphocytes (CTL) could be generated from the predominantly naive T-cell populations in CB, CB-derived mononuclear cells were stimulated with autologous Epstein-Barr virus (EBV) transformed B-lymphoblastoid cell lines over several weeks in the presence of recombinant human interleukin-2 (IL-2). By 28 days of culture, T-lymphocytes from all six CB that had been treated with IL-2 displayed EBV-specific cytotoxicity. These cells were largely CD4(+), with complete inhibition of cytotoxicity by anti-CD3 and variable inhibition by anti-HLA DR monoclonal antibodies. The EBV-specific effectors were cloned by limiting dilution, and most of the CTL clones were CD4(+). The cytotoxicity of the CB-derived CD4(+) CTL clones was inhibited by EGTA but not by anti-Fas ligand mAb, suggesting that this cytotoxicity was mediated by perforin/granzyme B. These data indicate that virus-specific CTL can be cultivated and cloned from CB, a human T-cell source that may not have prior in vivo antigenic exposure or reactivity. This finding may have applications in adoptive immunotherapy to recipients of CB transplants. 相似文献
4.
5.
Gibson JS Speake PF Muzyamba MC Husain F Luckas MC Ellory JC 《Biochimica et biophysica acta》2001,1512(2):231-238
The current study was designed to characterise K(+) transport in human fetal red blood cells, containing mainly haemoglobin F (HbF, and termed HbF cells), isolated from umbilical cords following normal parturition. Na(+)/K(+) pump activity was comparable to that in normal adult human red cells (which contain HbA, and are termed HbA cells). Passive (ouabain-resistant) K(+) transport was dominated by a bumetanide (10 microM)-resistant component, inhibited by [(dihydroxyindenyl)oxy]alkanoic acid (100 microM), calyculin A (100 nM) and Cl(-) removal, and stimulated by N-ethylmaleimide (1 mM) and staurosporine (2 microM) - all consistent with mediation via the K(+)-Cl(-) cotransporter (KCC). KCC activity in HbF cells was also O(2)-dependent and stimulated by swelling and urea, and showed a biphasic response to changes in external pH. Peak activity of KCC in HbF cells was about 3-fold that in HbA cells. These characteristics are qualitatively similar to those observed in HbA cells, notwithstanding the different conditions experienced by HbF cells in vivo, and the presence of HbF rather than HbA. KCC in HbF cells has a higher total capacity, but when measured at the ambient PO(2) of fetal blood it would be similar in magnitude to that in fully oxygenated HbA cells, and about that required to balance K(+) accumulation via the Na(+)/K(+) pump. These findings are relevant to the mechanism by which O(2) regulates membrane transporters in red blood cells, and to the strategy of promoting HbF synthesis as a therapy for patients with sickle cell disease. 相似文献
6.
Augusto Pessina Arianna Bonomi Francesca Sisto Carolina Baglio Loredana Cavicchini Emilio Ciusani Valentina Coccé Laura Gribaldo 《Cell biology international》2010,34(8):783-790
UCB (human umbilical cord blood) contains cells able to differentiate into non‐haematopoietic cell lineages. It also contains cells similar to primitive ESCs (embryonic stem cells) that can differentiate into pancreatic‐like cells. However, few data have been reported regarding the possibility of expanding these cells or the differential gene expression occurring in vitro. In this study, we expanded formerly frozen UCB cells by treatment with SCF (stem cell factor) and GM‐CSF (granulocyte–macrophage colony stimulating factor) in the presence of VPA (valproic acid). Gene expression profiles for beta cell differentiation and pluripotency (embryo stem cell phenotype) were analysed by RT‐PCR and immunocytochemistry. The results show a dramatic expansion (>150‐fold) of haematopoietic progenitors (CD45+/CD133+) which also expressed embryo markers of pluripotency (nanog, kfl‐4, sox‐2, oct‐3/4 andc‐myc), nestin, and pancreatic markers such as pax‐4, ngn‐3, pdx‐1 and syt‐1 (that is regulated by pdx‐1 and provides the cells with a Ca++ regulation mechanism essential for insulin exocytosis). Our results show that UCB cells can be expanded to produce large numbers of cells of haematopoietic lineage that naturally (without the need of retroviral vectors or transposons) express a gene pattern compatible with endocrine pancreatic precursors and markers of pluripotency. Further investigations are necessary to clarify, first, whether in this context, the embryogenes expressed are functional or not, and secondly, since these cells are safer than cells transfected with retroviral vectors or transposons, whether they would represent a potential tool for clinical application. 相似文献
7.
8.
Evaluation of eluents from separations of CD34+ cells from human cord blood using a commercial, immunomagnetic cell separation system 总被引:1,自引:0,他引:1
Melnik K Nakamura M Comella K Lasky LC Zborowski M Chalmers JJ 《Biotechnology progress》2001,17(5):907-916
Human CD34+ cells from cord blood were separated in a two-step process using a commercial, immunomagnetic cell retention system. The performance of the system was evaluated by analyzing a number of eluents from the separations with a number of analytical techniques. In addition to cell counts and flow cytometry analysis, a new experimental technique that is undergoing development, cell tracking velocimetry (CTV), was used. CTV measures the degree to which a cell is immunomagnetically labeled, known as the magnetophoretic mobility, of a population of cells on a cell-by-cell basis and presents the results in the form of a histogram similar to flow cytometry data. The average recovery and purity of CD34+ cells from 10 separations was 52% and 60%, respectively. CTV analysis indicated that the mean magnetophoretic mobility of the positively enriched CD34 cells was 9.64 x 10(-5) mm3/T-A-s, while the mean mobility from negative eluents was -2.02 x 10(-6) mm3/T-A-s, very similar to the mobility of unlabeled cells. Within the positive eluents, the range of magnetophoretic mobility was approximately 50-fold, representing a plausible 50-fold range in surface CD34 antigen expression. CTV analysis also indicated that in some separations, positive cells were not retained by the immunomagnetic cell retention system. Finally, preliminary studies indicate that monocytes might be a primary cause in the lower purities and recoveries seen in this study. It is suggested that the monocytes phagocytose the magnetic nanobeads and become sufficiently magnetized to be retained within the Miltenyi column, reducing the purity of the positive eluent. 相似文献
9.
10.
Sibov TT Severino P Marti LC Pavon LF Oliveira DM Tobo PR Campos AH Paes AT Amaro E F Gamarra L Moreira-Filho CA 《Cytotechnology》2012,64(5):511-521
Isolation of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) from full-term deliveries is a laborious, time-consuming process that results in a low yield of cells. In this study we identified parameters that can be helpful for a successful isolation of UCB-MSCs. According to our findings, chances for a well succeeded isolation of these cells are higher when MSCs were isolated from UCB collected from normal full-term pregnancies that did not last over 37 weeks. Besides the duration of pregnancy, blood volume and storage period of the UCB should also be considered for a successful isolation of these cells. Here, we found that the ideal blood volume collected should be above 80 mL and the period of storage should not exceed 6 h. We characterized UCB-MSCs by morphologic, immunophenotypic, protein/gene expression and by adipogenic differentiation potential. Isolated UCB-MSCs showed fibroblast-like morphology and the capacity of differentiating into adipocyte-like cells. Looking for markers of the undifferentiated status of UCB-MSCs, we analyzed the UCB-MSCs’ protein expression profile along different time periods of the differentiation process into adipocyte-like cells. Our results showed that there is a decrease in the expression of the markers CD73, CD90, and CD105 that correlates to the degree of differentiation of UCB-MSCs We suggest that CD90 can be used as a mark to follow the differentiation commitment degree of MSCs. Microarray results showed an up-regulation of genes related to the adipogenesis process and to redox metabolism in the adipocyte-like differentiated MSCs. Our study provides information on a group of parameters that may help with successful isolation and consequently with characterization of the differentiated/undifferentiated status of UCB-MSCs, which will be useful to monitor the differentiation commitment of UCB-MSC and further facilitate the application of those cells in stem-cell therapy. 相似文献
11.
BACKGROUND: CD133 is a newly developed hematopoietic stem cell marker but little is known about its function. Whether CD133(+) cell selection provides any advantage over CD34(+) selection for hematopoietic stem cell isolation and transplantation is unclear. The present study compared colony formation and endothelial cell differentiation of these two cell types from umbilical cord blood (UCB). METHODS: Mononuclear cells from the same UCB samples were used for both CD133(+) and CD34(+) cell selection. Cells with 97.1% purity were incubated in semi-solid culture medium containing stem cell growth factor (SCGF) and G-CSF or erythropoietin (EPO). Purified cells were also cultured in M199 containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1). RESULTS: CD34(+) and CD133(+) cells produced similar numbers of CFU-GM colonies (median 43.25 and 30.5, respectively; P>0.2). However, a greater than four-fold difference in BFU-E colony formation was observed from CD34(+) cells compared with CD133(+) cells (median 35 and 8, respectively; P<0.04). CD34(+) cells gave rise to endothelial-like cells when stimulated with VEGF, bFGF and IGF-1. CD133(+) cells were unable produce this cell type under the same conditions. DISCUSSION: CD133(+) cells produced smaller BFU-E colonies and were unable to differentiate into mature endothelial cells. CD34(+) cells contained endothelial progenitors that could differentiate into mature cells of this lineage. Based on these data, it appears that CD133 offers no distinct advantage over CD34 as a selective marker for immunoaffinity-based isolation of hematopoietic stem cells and endothelial progenitor cells. 相似文献
12.
Background
There is a growing interest in cord blood as a source of primitive stem cells with the capacity for multilineage differentiation. Pure cell fractions are needed for the characterization and in vitro expansion of stem cells as well as for their use in preclinical research. However, enrichment of stem cells is challenging due to the lack of stem cell-specific markers and gentle protocols for the isolation of highly pure stem cell fractions. Protocols developed for the enrichment of peripheral blood-derived stem cells have been found to be suboptimal for cord blood. 相似文献13.
14.
Sousa AF Andrade PZ Pirzgalska RM Galhoz TM Azevedo AM da Silva CL Aires-Barros MR Cabral JM 《Biotechnology letters》2011,33(12):2373-2377
A novel cell separation process based on immunoaffinity aqueous two phase systems is presented to isolate and purify CD34+ stem/progenitor cells directly from the whole umbilical cord blood (UCB). A system, composed of polyethylene glycol and dextran,
was evaluated for the selective recovery of CD34+ cells from UCB. A monoclonal antibody against the CD34 surface antigen was used for the direct partitioning of CD34+ cells in UCB to the PEG-rich phase. The initial population of CD34+ cells (0.2% of the initial sample) was enriched to values up to 42% in a single partitioning step, while the majority of
contaminant cells were partitioned to the dextran-rich phase (1.37 × 10−2 < KP < 2.76 × 10−2). This novel selection method allowed a recovery yield of 95% of CD34+ cells with a purification factor of 245 and is expected to pave a new way to purify hematopoietic stem/progenitor cells for
use in a variety of clinical settings. 相似文献
15.
Immunomagnetic separation technique was developed for specific detection and selective isolation ofPseudomonas syringae pv.phaseolicola, the agent of halo-blight disease of beans. Whole-cell and exopolysaccharide fraction of the bacterium was used for polyclonal
antibody production in rabbits. High specificity of the antisera was determined in agglutination reactions. The optimum immunocapture
time for both antisera was determined as 1 h by using 1/nL CFU (i.e. 106 CFU per mL). No significant difference was observed in the binding capacity of cells to immunomagnetic particles with different
antisera. 相似文献
16.
Mesenchymal stromal cells from umbilical cord blood 总被引:1,自引:0,他引:1
Mesenchymal Stromal Cells (MSC) are key candidates for cellular therapies. Although most therapeutic applications have focused on adult bone marrow derived MSC, increasing evidence suggests that MSC are present within a wide range of tissues. Umbilical cord blood (CB) has been proven to be a valuable source of hematopoietic stem cells, but its therapeutic potential extends beyond the hematopoietic component suggesting regenerative potential in solid organs as well. There is evidence that other stem or progenitor populations, such as MSC, exist in CB which might be responsible for these effects. Many different stem and progenitor cell populations have been postulated with potential ranging from embryonic like to lineage-committed progenitor cells. Based on the confusing data, this review focuses on a human CB derived, plastic adherent fibroblastoid population expressing similar characteristics to bone marrow derived MSC. It concentrates especially on concepts of isolation and expansion, comparing the phenotype with bone marrow derived MSC, describing the differentiation capacity and finally in the last the therapeutic potential with regard to regenerative medicine, stromal support, immune modulation and gene therapy. 相似文献
17.
Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: Proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow 下载免费PDF全文
Hongbo Meng Bin Xu Le Yao Mingping Qian Zhigang He Shaowu Zou Bo Zhou Zhenshun Song 《Cell biology international》2014,38(2):198-210
18.
The transfusion of red blood cells from umbilical cord blood (cord RBCs) is gathering significant interest for the treatment of fetal and neonatal anemia, due to its high content of fetal hemoglobin as well as numerous other potential benefits to fetuses and neonates. However, in order to establish a stable supply of cord RBCs for clinical use, a cryopreservation method must be developed. This, in turn, requires knowledge of the osmotic parameters of cord RBCs. Thus, the objective of this study was to characterize the osmotic parameters of cord RBCs: osmotically inactive fraction (b), hydraulic conductivity (Lp), permeability to cryoprotectant glycerol (Pglycerol), and corresponding Arrhenius activation energies (Ea). For Lp and Pglycerol determination, RBCs were analyzed using a stopped-flow system to monitor osmotically-induced RBC volume changes via intrinsic RBC hemoglobin fluorescence. Lp and Pglycerol were characterized at 4 °C, 20 °C, and 35 °C using Jacobs and Stewart equations with the Ea calculated from the Arrhenius plot. Results indicate that cord RBCs have a larger osmotically inactive fraction compared to adult RBCs. Hydraulic conductivity and osmotic permeability to glycerol of cord RBCs differed compared to those of adult RBCs with the differences dependent on experimental conditions, such as temperature and osmolality. Compared to adult RBCs, cord RBCs had a higher Ea for Lp and a lower Ea for Pglycerol. This information regarding osmotic parameters will be used in future work to develop a protocol for cryopreserving cord RBCs. 相似文献
19.
Fetal liver is the main site of haematopoiesis during mid-gestation. The adult liver still provides a favourable environment for extramedullary haematopoiesis. Nevertheless, regulation of liver haematopoiesis by cell-cell contacts or by cytokines remains poorly understood. Recently, we have shown that rat liver epithelial cells (RLECs) support long-term survival and multilineage differentiation of adult human CD34(+)and CD34(+)/CD38(-)haematopoietic cells obtained from granulocyte-colony stimulating factor mobilized peripheral blood and from bone marrow respectively. In addition, the importance of physical proximity between haematopoietic cells and RLECs was clearly demonstrated. Here, our findings give evidence that RLECs belonging to the epithelial but non-parenchymal liver compartment also sustain the long-term production of progenitors from human CD34(+)umbilical cord blood cells. Moreover, to better analyse the regulation of haematopoiesis in this RLEC coculture model, we have investigated the cytokine expression by RLECs alone and by RLECs coming from coculture with CD34(+)cells from umbilical cord blood. We demonstrated that a broad spectrum of cytokines acting at different stages of haematopoiesis is produced by RLECs. Interestingly, an upregulation of leukemia inhibitory factor expression by RLECs in presence of CD34(+)haematopoietic cells was observed. These data suggest an important role of cell-cell interactions in the regulation of haematopoiesis. 相似文献
20.
Human umbilical cord blood is frequently used as a source of transplantable hematopoietic cells and more recently as a target of gene therapy - a new approach for treatment of various disorders. The aim of our study was optimisation of the transfection conditions of cord blood-derived CD34(+) hematopoietic cells. Mononuclear cells fraction was isolated from cord blood samples by density gradient centrifugation. Subsequently, CD34(+) hematopoietic cells were separated on immunomagnetic MiniMACS columns. Pure population of CD34(+) cells was incubated in a serum free medium supplemented with thrombopoietin, stem cell factor and Flt-3 ligand for 48 h and then transfected with plasmid DNA carrying the enhanced version of green fluorescent protein (EGFP) as a reporter gene. We studied the influence of various pulse settings and DNA concentrations on the transfection efficiency, measured by flow cytometry as the fluorescence of target cells due to the expression of EGFP. The optimal settings were as follows: 4 mm cuvette, 1600 microF, 550 V/cm, and 10 microg of DNA per 500 microl. With these settings we obtained a high transfection frequency (41.2%) without a marked decrease of cell viability. An increase of the pulse capacitance and/or of DNA concentration resulted in a greater electroporation efficiency, but also in a decrease of cell viability. In conclusion, the results described here allow one to recommend electroporation as an efficient method of gene delivery into CD34(+) hematopoietic cells derived from human umbilical cord blood. 相似文献