首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Krom N  Ramakrishna W 《Plant physiology》2008,147(4):1763-1773
Comparative analysis of the organization and expression patterns of divergent and convergent gene pairs in multiple plant genomes can identify patterns that are shared by more than one species or are unique to a particular species. Here, we study the coexpression and interspecies conservation of divergent and convergent gene pairs in three plant species: rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and black cottonwood (Populus trichocarpa). Strongly correlated expression levels between divergent and convergent genes were found to be quite common in all three species, and the frequency of strong correlation appears to be independent of intergenic distance. Conservation of divergent or convergent arrangement among these species appears to be quite rare. However, conserved arrangement is significantly more frequent when the genes display strongly correlated expression levels or have one or more Gene Ontology (GO) classes in common. A correlation between intergenic distance in divergent and convergent gene pairs and shared GO classes was observed, in varying degrees, in rice and Populus but not in Arabidopsis. Furthermore, multiple GO classes were either overrepresented or underrepresented in Arabidopsis and Populus gene pairs, while only two GO classes were underrepresented in rice divergent gene pairs. Three cis-regulatory elements common to both Arabidopsis and rice were overrepresented in the intergenic regions of strongly correlated divergent gene pairs compared to those of noncorrelated pairs. Our results suggest that shared as well as unique mechanisms operate in shaping the organization and function of divergent and convergent gene pairs in different plant species.  相似文献   

2.
Krom N  Recla J  Ramakrishna W 《Genetica》2008,134(3):297-310
Retrotransposons comprise a significant fraction of the rice genome. Despite their prevalence, the effects of retrotransposon insertions are not well understood, especially with regard to how they affect the expression of genes. In this study, we identified one-sixth of rice genes as being associated with retrotransposons, with insertions either in the gene itself or within its putative promoter region. Among genes with insertions in the promoter region, the likelihood of the gene being expressed was shown to be directly proportional to the distance of the retrotransposon from the translation start site. In addition, retrotransposon insertions in the transcribed region of the gene were found to be positively correlated with the presence of alternative splicing forms. Furthermore, preferential association of retrotransposon insertions with genes in several functional classes was identified. Some of the retrotransposons that are part of full-length cDNA (fl-cDNA) contribute splice sites and give rise to novel exons. Several interesting trends concerning the effects of retrotransposon insertions on gene expression were identified. Taken together, our data suggests that retrotransposon association with genes have a role in gene regulation. The data presented in this study provides a foundation for experimental studies to determine the role of retrotransposons in gene regulation.  相似文献   

3.
Gene order and content differ among homologous regions of closely related genomes. Similarities in the expression profiles of physically adjacent genes suggest that the proper functioning of these genes depends on maintaining a specific position relative to each other. To better understand the results of the interaction of these two genomic forces, convergent, divergent, and tandem gene pairs in rice and sorghum, as well as their homologs in rice, sorghum, maize, and Brachypodium were analyzed. The status of each pair in all four species: whether it was conserved, inverted, rearranged, or missing homologs was determined. We observed that divergent gene pairs had lower rates of conservation than convergent or tandem pairs, but higher rates of rearranged pairs and missing homologs in maize than in any other species. We also discovered species-specific gene pairs in rice and sorghum. In rice, gene pairs with strongly correlated expression levels were conserved significantly more often than those with little or no correlation. We assigned three types of gene pair to one of 14 possible evolutionary history categories to uncover their evolutionary dynamics during the evolution of grass genomes.  相似文献   

4.
5.
Xu Z  Ramakrishna W 《Gene》2008,412(1-2):50-58
Retrotransposons are abundant in higher plant genomes. Although retrotransposons associated with plant genes have been identified, little is known about their evolutionary conservation at the level of species and subspecies. In the present study, we investigated the phylogenetic distribution of long terminal repeat (LTR) retrotransposon, long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) insertions in six genes in 95 cultivated and wild rice genotypes. These six genes are likely to be functional based on nonsynonymous (Ka) to synonymous (Ks) substitution ratios which were found to be significantly <1. Different conservation patterns of these retrotransposons in genes were observed in cultivated and wild rice species. Four out of seven retrotransposon insertions appear to predate the ancestral Oryza AA genome. Two of these insertions in genes 4 and 5 occurred early in the evolutionary history of Oryza. Two retrotransposon insertions in gene 1 arose after the divergence of Asian cultivated rice from its wild ancestor. Furthermore, the retrotransposon insertion in gene 3 appears to have occurred in the ancestral lineage leading to temperate japonicas. Conservation of retrotransposon insertions in genes in specific groups, species, and lineages might be related to their specific function.  相似文献   

6.
7.
8.
9.
10.
Ustyugova SV  Lebedev YB  Sverdlov ED 《Genetica》2006,128(1-3):261-272
LINE-1 (L1) retrotransposons comprise about 17% of the human genome and include a recently transposed set of Ta-L1 elements that are polymorphic in humans. Although it is widely believed that L1s play an essential role in shaping and functioning of mammalian genomes, the understanding of the impact of L1 insertions on gene expression is far from being comprehensive. Here we compared hnRNA contents for allele pairs of genes heterozygous for Ta-L1 insertions in their introns in human cell lines of various origin. We demonstrated that some Ta-L1 insertions correlated with decreased content of the corresponding hnRNAs. This effect was characteristic of only nearly full-sized L1s and seemed to be tissue specific.  相似文献   

11.
Twenty-two pairs of chorion genes belonging to the A and B multigene families have been characterized and mapped within two segments of a 320 kb (1 kb = 10(3) bases or base-pairs) chromosomal walk in the domesticated silkmoth Bombyx mori. Eighteen of the gene pairs belong to two groups that are typified by the previously characterized A/B.L12 and A/B.L11 chorion gene pairs, and are defined by two respective types of short (approx. 280 base-pairs) bidirectional promoter sequences. In the chromosome, the L12-like and L11-like pairs are interspersed with each other and with the remaining four gene pairs, which have unrelated promoter sequences. We have sequenced the promoter regions and adjacent small exons of all L12-like and L11-like A and B genes in the walk. The L12-like promoters are highly conserved, whereas L11-like promoters are somewhat more variable. Reconsideration of previous data on RNA accumulation and disappearance during choriogenesis, in the light of the sequences, indicates that L12-like genes are developmentally early-middle, while L11-like genes correspond to two developmental subgroups, middle I and middle II. Sequence comparisons of all these promoters, as well as the previously characterized promoters of the developmentally late HcA and HcB genes, identify short elements of possible regulatory significance. The sequences, as well as extensive cross-hybridization analysis with short probes derived from the reference A/B.L12 gene pair, under carefully controlled conditions of stringency, indicate the occurrence of sequence transfers among A or B genes. These sequence transfers, which could result from gene conversions or unequal crossovers, are less abundant than in the HcA and HcB families, but do result in a patchwork of similarities and differences in the A and B genes. The transfers appear to be least frequent between the moderately divergent A genes that belong to different temporal classes, while the L12-like and L11-like B genes appear to be extensively homogenized in sequence.  相似文献   

12.
13.
Sequences and expression patterns of newly isolated human histone H2A and H2B genes and the respective proteins were compared with previously isolated human H2A and H2B genes and proteins. Altogether, 15 human H2A genes and 17 human H2B genes have been identified. 14 of these are organized as H2A/H2B gene pairs, while one H2A gene and three H2B genes are solitary genes. Two H2A genes and two H2B genes turned outto be pseudogenes. The 13 H2A genes code for at least 6 different amino acid sequences, and the 15 H2B genes encode 11 different H2B isoforms. Each H2A/H2B gene pair is controlled by a divergent promoter spanning 300 to 330 nucleotides between the coding regions of the two genes. The highly conserved divergent H2A/H2B promoters can be classified in two groups based on the patterns of consensus sequence elements. Group I promoters contain a TATA box for each gene, two Oct-1 factor binding sites, and three CCAAT boxes. Group II promoters contain the same elements as group I promoters and an additional CCAAT box, a binding motif for E2F and adjacent a highly conserved octanucleotide (CACAGCTT) that has not been described so far. Five of the 6 gene pairs and 4 solitary genes with group I promoters are localized in the large histone gene cluster at 6p21.3-6p22, and one gene pair is located at 1q21. All group II promoter associated genes are contained within the histone gene subcluster at D6S105, which is located at a distance of about 2 Mb from the major subcluster at 6p21.3-6p22 containing histone genes with group I promoters. Almost all group II H2A genes encode identical amino acid sequences, whereas group I H2A gene products vary at several positions. Using human cell lines, we have analyzed the expression patterns of functional human H2A/H2B gene pairs organized within the two histone gene clusters on the short arm of chromosome 6. The genes show varying expression patterns in different tumor cell lines.  相似文献   

14.
15.
The HindII and HindIII restriction maps of the attphi80-tonB-trp region of the Escherichia coli chromosome are presented. Analysis of phage DNAs carrying tonB mutations has allowed identification of a 1,730-base pair HindII fragment containing at least part of the tonB gene. This fragment is 4,020 base pairs from the end of trpA, with the total distance from attphi80 to trpA being 6,550 +/- 800 base pairs. Properties of hybrid plasmids containing insertions of various tonB+ restriction fragments suggest that tonB lies completely within the 1,730-base pair fragment. In addition, apparent fusions of beta-galactoside to proteins within the tonB region suggest that the entire region codes for more than one polypeptide.  相似文献   

16.
A substantial proportion of human genes contain tissue-specifically DNA-methylated regions (TDMRs). However, little is known about the evolutionary conservation of differentially methylated loci, how they evolve, and the signals that regulate them. We have studied TDMR conservation in the PLG and TBX gene families and in 32 pseudogene–parental gene pairs. Among the members of the recently evolved PLG gene family, 5′-UTR methylation is conserved and inversely correlated with the cognate gene expression, indicating as well a conserved regulatory role of DNA methylation. Conversely, many genes of the much older TBX family display complementary tissue-specific methylation, suggesting an epigenetic complementation in the evolution of this gene family. Similar to gene families, unprocessed pseudogenes arose from gene duplications and we found TDMR conservation in some pseudogene–parental gene pairs displaying short evolutionary distances. However, for the majority of unprocessed pseudogenes and for all processed pseudogenes examined, we found that tissue-specific methylation arose de novo after gene duplication.  相似文献   

17.
18.
To address the need for new antibacterials, a number of bacterial genomes have been systematically disrupted to identify essential genes. Such programs have focused on the disruption of single genes and may have missed functions encoded by gene pairs or multiple genes. In this work, we hypothesized that we could predict the identity of pairs of proteins within one organism that have the same function. We identified 135 putative protein pairs in Bacillus subtilis and attempted to disrupt the genes forming these, singly and then in pairs. The single gene disruptions revealed new genes that could not be disrupted individually and other genes required for growth in minimal medium or for sporulation. The pairwise disruptions revealed seven pairs of proteins that are likely to have the same function, as the presence of one protein can compensate for the absence of the other. Six of these pairs are essential for bacterial viability and in four cases show a pattern of species conservation appropriate for potential antibacterial development. This work highlights the importance of combinatorial studies in understanding gene duplication and identifying functional redundancy.  相似文献   

19.
We have isolated Saccharomyces cerevisiae mutants bearing deletions of one or the other of the two divergently transcribed gene pairs encoding H2A and H2B. The deletions produced diverse effects on the yeast life cycle. Deletion of TRT1, one of the H2A-H2B gene pair sets, affected mitotic growth, sporulation, spore germination, the heat shock response, and exit from the stationary phase; deletion of TRT2, the other H2A-H2B gene pair set, had negligible effects on these same processes. Using a genetic complementation assay, we found that the differential effects of the deletions could be attributed to two features of the gene sets: first, the expression of the TRT1 gene pair, but not the TRT2 gene pair, could compensate for the absence of its partner; second, the protein subtypes encoded by the two gene pairs appear to have different functions in the heat shock response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号