首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》2022,1863(5):148554
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome – mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.  相似文献   

2.
To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorga-nization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other re-ported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non- conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation.  相似文献   

3.
Crimi M  O'Hearn SF  Wallace DC  Comi GP 《IUBMB life》2005,57(12):811-818
Mitochondria are ubiquitous in eukaryotic cells where they generate much of the cellular energy by the process of oxidative phosphorylation (OXPHOS). The approximately 1500 genes of the mitochondrial genome are distributed between the cytoplasmic, maternally-inherited, mitochondrial DNA (mtDNA) which encodes 37 genes and the nuclear DNA (nDNA) which encompasses the remaining mitochondrial genes. The interplay between the mtDNA and nDNA encoded mitochondrial genes and their role in mitochondrial disorders is still largely unclear. One approach for elucidating the pathophysiology of mitochondrial diseases has been to look at changes in the expression of mtDNA and nDNA-encoded genes in response to specific mitochondrial genetic defects. Initial studies of gene expression changes in response to mtDNA defect employed blot technologies to analyze changes in the expression of individual genes one at a time. While Southern/Northern blot experiments confirmed the importance of nDNA-mtDNA interactions in the pathophysiology of mitochondrial myopathy, the methodology used limited the number of genes that could be analyzed from each patient. This barrier has been overcome, in part by the advent of DNA microarray technology. In DNA microarrays gene sequences or oligonucleotides homologous to gene sequences are arrayed on a solid support. The RNA from the subject is then isolated, the mRNA converted to cDNA and the cDNA labeled with a fluorescent probe. The labeled cDNA is hybridized on the microarray and the fluorescence bound to each array is then quantified. Recently, these technologies have been applied to mitochondrial disease patient tissues and the presence of coordinate changes in mitochondrial gene expression confirmed.  相似文献   

4.
Mitochondrial function depends on the coordinate action of nuclear and mitochondrial genomes. The genetic dissection of these interactions presents special challenges in obligate aerobes, because the viability of these organisms depends on mitochondrial respiration. The plant trait cytoplasmic male sterility (CMS) is determined by the mitochondrial genome and is associated with a pollen sterility phenotype that can be suppressed or counteracted by nuclear genes known as restorer-of-fertility genes. Here, I review the nature and the origin of the genes that determine CMS, together with recent investigations that have exploited CMS to provide new insights into plant mitochondrial-nuclear communication. These studies have implicated mitochondrial signaling pathways, including those involved in regulating cell death and nuclear gene expression, in the elaboration of CMS. The molecular cloning of nuclear genes that restore fertility (i.e. restorer-of-fertility genes) has identified genes encoding pentatricopeptide-repeat proteins as key regulators of plant mitochondrial gene expression.  相似文献   

5.
The complete sequence of the carp mitochondrial genome of 16,575 base pairs has been determined. The carp mitochondrial genome encodes the same set of genes (13 proteins, 2 rRNAs, and 22 tRNAs) as do other vertebrate mitochondrial DNAs. Comparison of this teleostean mitochondrial genome with those of other vertebrates reveals a similar gene order and compact genomic organization. The codon usage of proteins of carp mitochondrial genome is similar to that of other vertebrates. The phylogenetic relationship for mitochondrial protein genes is more apparent than that for the mitochondrial tRNA and rRNA genes.Correspondence to: F. Huang  相似文献   

6.
Differential rates of nucleotide substitution among different gene segments and between distinct evolutionary lineages is well documented among mitochondrial genes and is likely a consequence of locus-specific selective constraints that delimit mutational divergence over evolutionary time. We compared sequence variation of 18 homologous loci (15 coding genes and 3 parts of the control region) among 10 mammalian mitochondrial DNA genomes which allowed us to describe different mitochondrial evolutionary patterns and to produce an estimation of the relative order of gene divergence. The relative rates of divergence of mitochondrial DNA genes in the family Felidae were estimated by comparing their divergence from homologous counterpart genes included in nuclear mitochondrial DNA (Numt, pronounced "new might"), a genomic fossil that represents an ancient transfer of 7.9 kb of mitochondrial DNA to the nuclear genome of an ancestral species of the domestic cat (Felis catus). Phylogenetic analyses of mitochondrial (mtDNA) sequences with multiple outgroup species were conducted to date the ancestral node common to the Numt and the cytoplasmic (Cymt) mtDNA genes and to calibrate the rate of sequence divergence of mitochondrial genes relative to nuclear homologous counterparts. By setting the fastest substitution rate as strictly mutational, an empirical "selective retardation index" is computed to quantify the sum of all constraints, selective and otherwise, that limit sequence divergence of mitochondrial gene sequences over time.   相似文献   

7.
N Ohta  N Sato    T Kuroiwa 《Nucleic acids research》1998,26(22):5190-5198
The complete nucleotide sequence of the mitochondrial genome of a very primitive unicellular red alga, Cyanidioschyzon merolae , has been determined. The mitochondrial genome of C.merolae contains 34 genes for proteins including unidentified open reading frames (ORFs) (three subunits of cytochrome c oxidase, apocytochrome b protein, three subunits of F1F0-ATPase, seven subunits of NADH ubiquinone oxidoreductase, three subunits of succinate dehydrogenase, four proteins implicated in c-type cytochrome biogenesis, 11 ribosomal subunits and two unidentified open reading frames), three genes for rRNAs and 25 genes for tRNAs. The G+C content of this mitochondrial genome is 27.2%. The genes are encoded on both strands. The genome size is comparatively small for a plant mitochondrial genome (32 211 bp). The mitochondrial genome resembles those of plants in its gene content because it contains several ribosomal protein genes and ORFs shared by other plant mitochondrial genomes. In contrast, it resembles those of animals in the genome organization, because it has very short intergenic regions and no introns. The gene set in this mitochondrial genome is a subset of that of Reclinomonas americana , an amoeboid protozoan. The results suggest that plant mitochondria originate from the same ancestor as other mitochondria and that most genes were lost from the mitochondrial genome at a fairly early stage of the evolution of the plants.  相似文献   

8.
The oxidative capacity of mammalian striated muscles can vary markedly over a nearly 10-fold range, reflecting major differences in the expression of genes that encode enzymes of oxidative metabolism, including genes located exclusively within mitochondrial DNA. To clarify the regulatory events that govern expression of mitochondrial genes in striated muscle, nucleic acid hybridization procedures employing cloned segments of mitochondrial DNA as probes were utilized to determine the concentrations of mitochondrial DNA, mitochondrial ribosomal RNA, and cytochrome b mRNA (a mitochondrial gene product) in rabbit striated muscles of markedly different oxidative capacities. When cardiac muscle and Type I (red, oxidative) skeletal muscle were compared to Type II (white, glycolytic) skeletal muscle, mitochondrial DNA, mitochondrial ribosomal RNA, and cytochrome b mRNA, each increased in direct proportion to increases in oxidative capacity. Furthermore, when the phenotypic characteristics of Type II skeletal muscle were altered by electrical stimulation in vivo, mitochondrial DNA, mitochondrial rRNA, and cytochrome b mRNA also increased proportionately with increases in oxidative capacity. These results indicate that the expression of mitochondrial genes in mammalian striated muscle is proportionate to their copy number, and support the hypothesis that amplification of the mitochondrial genome relative to chromosomal DNA is an important feature underlying enhanced expression of mitochondrial genes in highly oxidative tissues.  相似文献   

9.
10.
11.
12.
Many human diseases including development of cancer is associated with depletion of mitochondrial DNA (mtDNA) content. These diseases are collectively described as mitochondrial DNA depletion syndrome (MDS). High similarity between yeast and human mitochondria allows genomic study of the budding yeast to be used to identify human disease genes. In this study, we systematically screened the pre-existing respiratory-deficient Saccharomyces cerevisiae yeast strains using fluorescent microscopy and identified 102 nuclear genes whose deletions result in a complete mtDNA loss, of which 52 are not reported previously. Strikingly, these genes mainly encode protein products involved in mitochondrial protein biosynthesis process (54.9%). The rest of these genes either encode protein products associated with nucleic acid metabolism (14.7%), oxidative phosphorylation (3.9%), or other protein products (13.7%) responsible for bud-site selection, mitochondrial intermembrane space protein import, assembly of cytochrome-c oxidase, vacuolar protein sorting, protein-nucleus import, calcium-mediated signaling, heme biosynthesis and iron homeostasis. Thirteen (12.7%) of the genes encode proteins of unknown function. We identified human orthologs of these genes, conducted the interaction between the gene products and linked them to human mitochondrial disorders and other pathologies. In addition, we screened for genes whose defects affect the nuclear genome integrity. Our data provide a systematic view of the nuclear genes involved in maintenance of mitochondrial DNA. Together, our studies i) provide a global view of the genes regulating mtDNA content; ii) provide compelling new evidence toward understanding novel mechanism involved in mitochondrial genome maintenance and iii) provide useful clues in understanding human diseases in which mitochondrial defect and in particular depletion of mitochondrial genome plays a critical role.  相似文献   

13.
We determined the complete mitochondrial genome (mitogenome) sequence of the dragonet Callionymus curvicornis. The total length of C. curvicornis mitogenome is 16,406 bp, which consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region. It has the typical vertebrate mitochondrial gene arrangement. This is the first report of a complete mitochondrial genome in the fish suborder Callionymoidei.  相似文献   

14.
Popescu CE  Lee RW 《Genetics》2007,175(2):819-826
The mitochondrial genomes of the Chlorophyta exhibit significant diversity with respect to gene content and genome compactness; however, quantitative data on the rates of nucleotide substitution in mitochondrial DNA, which might help explain the origin of this diversity, are lacking. To gain insight into the evolutionary forces responsible for mitochondrial genome diversification, we sequenced to near completion the mitochondrial genome of the chlorophyte Chlamydomonas incerta, estimated the evolutionary divergence between Chlamydomonas reinhardtii and C. incerta mitochondrial protein-coding genes and rRNA-coding regions, and compared the relative evolutionary rates in mitochondrial and nuclear genes. Synonymous and nonsynonymous substitution rates do not differ significantly between the mitochondrial and nuclear protein-coding genes. The mitochondrial rRNA-coding regions, however, are evolving much faster than their nuclear counterparts, and this difference might be explained by relaxed functional constraints on the mitochondrial translational apparatus due to the small number of proteins synthesized in Chlamydomonas mitochondria. Substitution rates at synonymous sites in a nonstandard mitochondrial gene (rtl) and at intronic and synonymous sites in nuclear genes expressed at low levels suggest that the mutation rate is similar in these two genetic compartments. Potential evolutionary forces shaping mitochondrial genome evolution in Chlamydomonas are discussed.  相似文献   

15.
Moon S  Cho S  Kim H 《Genomics》2008,92(2):85-93
Currently, the spatial patterns of mitochondrial genes and how the genomic localization of (pseudo)genes originated from mitochondrial DNA remain largely unexplained. The aim of this study was to elucidate the organization of mitochondrial (pseudo)genes given their evolutionary origin. We used a keyword finding method and a bootstrapping method to estimate parameter values that represent the distribution pattern of mitochondrial genes in the nuclear genome. Almost half of mitochondrial genes showing physical clusters were located in the pericentromeric and subtelomeric regions of the chromosome. Most interestingly, the size of these clusters ranged from 0.085 to 3.2 Mb (average ± SD 1.3 ± 0.73 Mb), which coincides with the size of the evolutionary pocket, or the average size of evolutionary breakpoint regions. Our findings imply that the localization of mitochondrial genes in the human genome is determined independent of adaptation.  相似文献   

16.
17.
Chen L  Zhang H H 《农业工程》2012,32(5):232-239
The complete mitochondrial genome sequence of the raccoon dog (Nyctereutes procyonoides) was determined by using the long and accurate polymerase chain reaction. The entire mitochondrial genome sequence is 16,713 bp in length contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and 1 control region. Most mitochondrial genes are encoded on the H strand, except for the ND6 gene and 8 tRNA genes. The base compositions of mitochondrial genomes present clearly A–T skew. All the transfer RNA genes can be folded into the typical cloverleaf-shaped structure except tRNA-Ser (AGY), which lacks the dihydrouridine arm. Protein-coding genes mainly initiate with ATG and terminate with TAA. Some reading frame intervals and overlaps are found in the mitochondrial genome. The control region can be divided into three domains: the extended termination associated sequences (ETASs) domain, the central conserved domain and the conserved sequence blocks (CSBs) domain. Three conserved sequence blocks (CSBs) and one extended termination associated sequences (ETAS-1) is found in the control region. The phylogenetic analysis based on the concatenated data set of 14 genes in the mitochondrial genome of Canidae shows that the raccoon dog has close phylogenetic position with the red fox (Vulpes vulpes) and they constitute a clade which has an equil evolutionary position with the clade formed by the genera Canis and Cuon.  相似文献   

18.
19.
Wang X  Wang J  He S  Mayden RL 《Gene》2007,399(1):11-19
The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S), 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust estimate of the otophysan phylogeny.  相似文献   

20.
Mitochondrial genes overexpressed in human and monkey B-cell non-Hodgkin lymphomas (B-NHLs) were sought via subtraction hybridization, cloning, and differential screening of the resulting cDNA libraries. The cDNAs of mitochondrial genes constituted an appreciable proportion of all lymphoma-specific cDNAs. Lymphomogenesis was associated with upregulation of a set of mitochondrial genes, which varied with lymphoma type but always included NADHIV. A possible association between upregulation of certain mitochondrial genes and cell malignant transformation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号