首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Cholesterol oxidase (ChOx) has been covalently immobilized onto 1-fluoro-2-nitro-4-azidobenzene (FNAB) modified poly-(3-hexylthiophene) (P3HT) self-assembled monolayer (SAM) onto gold coated glass plates. These ChOx/FNAB/P3HT/Au bio-electrodes have been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical impedance technique, cyclic voltammetric technique and atomic force microscopic (AFM) technique, respectively. The ChOx/FNAB/P3HT/Au bio-electrodes were utilized for the estimation of cholesterol concentration in standard solutions using surface plasmon resonance (SPR) technique. It is shown that this SPR biosensor has linearity from 50 to 500 mg/dl of cholesterol in solution with detection limit of 50 mg/dl, sensitivity of 1.0 4 m degrees /(mg dl), reusability of around 15 times and a shelf-life of about 10 weeks when stored at 4 degrees C.  相似文献   

2.
To enhance the feasibility of surface plasmon resonance (SPR) immunosensor as a tool for diagnosing type I diabetes, we enhanced the sensitivity of immunoresponse for detecting the monoclonal anti-glutamic acid decarboxylase (GAD) antibody by modification of mixed self-assembled monolayers (SAMs). The effects of the different mixed SAMs were evaluated with respect to the degree of streptavidin immobilization, the degree of biotin-GAD immobilization, and the immunoresponse sensitivity. Consequently, the sensitivity of the immunoresponse for the detection of anti-GAD antibody was enhanced as a result of the reduction in steric hindrance brought about by using SAMs of heterogeneous lengths. The immunoresponse for detecting the monoclonal anti-GAD antibody was also enhanced with the reduction of the excess immobilization of biotin-GAD and the minimization of non-specific binding that resulted from the simple substitution of the spacer from a carboxylic-terminated SAM for the hydroxyl-terminated SAM.  相似文献   

3.
The fabrication of protein A film on self-assembled monolayer was done for the construction of immunosensor using surface plasmon resonance (SPR) measurement. The layer of heterobifunctional linker, N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) was self-assembled on the gold (Au) surface. Due to the succinimidyl functional group in SPDP to be reacted with amine (NH2) group of protein A, the covalent immobilization of protein A was subsequently induced toward Au surface. The characteristics of film formation were investigated using SPR with respect to the various concentrations of SPDP and protein A. The optimal concentration for the film formation was found to be 0.1 mg/mL of SPDP and 0.1 mg/mL of protein A, respectively. The surface topography of protein A layer using atomic force microscopy showed that the heteromolecular layer was formed successfully. The antibody, anti-bovine serum albumin (BSA), was immobilized onto protein A layer, and the fabricated antibody layer was applied for the detection of BSA. The extent of BSA–antibody binding was measured using SPR and its lower detection limit of BSA was 100 pM.  相似文献   

4.
Protein chip based on surface plasmon resonance (SPR) was developed for detection of pathogens existing in contaminated environment, such as Escherichia coli O157:H7, Salmonella typhimurium, Legionella pneumophila, and Yersinia enterocolitica. Protein G was immobilized to endow the orientation of antibody molecules on the SPR surface. The pathogen binding of the protein chip was investigated by SPR spectroscopy. Consequently, it was found that the four kinds of pathogen could be selectively detected by using SPR-based protein chip.  相似文献   

5.

Background  

The topoisomerase I (TopI) reaction intermediate consists of an enzyme covalently linked to a nicked DNA molecule, known as a TopI-DNA complex, that can be trapped by inhibitors and results in failure of re-ligation. Attempts at new derivative designs for TopI inhibition are enthusiastically being pursued, and TopI inhibitors were developed for a variety of applications. Surface plasmon resonance (SPR) was recently used in TopI-inhibition studies. However, most such immobilized small molecules or short-sequence nucleotides are used as ligands onto sensor chips, and TopI was used as the analyte that flowed through the sensor chip.  相似文献   

6.
In order to explore the clinical application of the nanobiosensor based on localized surface plasmon resonance (LSPR), we used our LSPR biosensor to detect the microalbuminuria in this work. The sliver nanoparticles were fabricated by using nanosphere lithography. The anti-human albumin antibody was immobilized on the sensor surface by amine coupling method. The different concentrations of commercial albumin and albumin in urine samples from three mild preeclampsia patients were determined according to the peak of LSPR extinction spectra. Under optimum conditions, our results showed that the biosensor displayed a detection limit of 1 ng/ml and wide dynamic range of 1 ng/ml to 1 μg/ml. Furthermore, the microalbuminuria of three patients was determined by our biosensor within a short assay time, without sample purification. This biosensor proposed herein is easy to prepare and could be used for low-cost, rapid, label-free, and sensitive screening of the microalbuminuria. This approach provides a promising platform for developing clinical diagnostic applications.  相似文献   

7.
We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte (mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with antimouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.  相似文献   

8.
Surface plasmon resonance (SPR) as a label-free biosensor technique has become an important tool in drug discovery campaigns during the last couple of years. For good assay performance, it is of high interest to verify the functional activity on the immobilization of the target protein on the chip. This study illustrates the verification of the catalytic activity of the drug target protein PqsD by monitoring substrate conversion as a decrease in SPR signal and product detection by ultra high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS(2)). This assay would be applicable to control surface activity of immobilized ligands.  相似文献   

9.
Considerable interest has been focused on telomerase because of its potential use in assays for cancer diagnosis, and for anti-telomerase drugs as a strategy for cancer chemotherapy. A number of assays based on the polymerase chain reaction (PCR) have been developed for evaluation of telomerase activity. To overcome the disadvantages of the conventional telomerase assay [telomeric repeat amplification protocol (TRAP)] related to PCR artifacts and troublesome post-PCR procedures, we have developed a telomeric repeat elongation (TRE) assay which directly measures telomerase activity as the telomeric elongation rate by biosensor technology using surface plasmon resonance (SPR). 5′-Biotinylated oligomers containing telomeric repeats were immobilized on streptavidin-pretreated dextran sensor surfaces in situ using the BIACORE apparatus. Subsequently, the oligomers associated with the telomerase extracts were elongated in the BIACORE apparatus. The rate of TRE was calculated by measuring the SPR signals. We examined elongation rates by the TRE assay in 18 cancer and three normal human fibroblast cell lines, and 12 human primary carcinomas and matching normal tissues. The elongation rates increased in a concentration- and time-dependent manner. Those of cancer cells were two to 10 times higher than fibroblast cell lines and normal tissues. Telomerase activities and its inhibitory effects of anti-telomerase agents as measured by both the TRE and TRAP assays showed a good correlation. Our assay allows precise quantitative comparison of a wide range of human cells from somatic cells to carcinoma cells. TRE assay is suitable for practical use in the assessment of telomerase activity in preclinical and clinical trials of telomerase-based therapies, because of its reproducibility, rapidity and simplicity.  相似文献   

10.
We developed a method to completely regenerate the gold (Au) surface of 3-aminopropyltriethoxysilane (APTES)-functionalized Au-coated surface plasmon resonance (SPR) chip that had been used for human fetuin A (HFA) immunoassay. It involved treatment of the used SPR chip with freshly prepared piranha solution (concentrated H(2)SO(4)/30% H(2)O(2)=3:1, v/v) for 15 min followed by extensive rinsing with ethanol and deionized water. The developed method enabled prolonged reuse of the regenerated SPR chip that increased its cost-effectiveness without affecting the reproducibility of HFA immunoassays.  相似文献   

11.
A surface plasmon resonance array biosensor based on spectroscopic imaging   总被引:6,自引:0,他引:6  
We have developed a multi-element transduction system which combines conventional SPR spectroscopy with one-dimensional SPR microscopy to create an effective platform for monitoring binding events on macro- or micro-patterned receptor arrays created on disposable sensor chips. This creates an effective platform for monitoring simultaneous binding events on each of the regions patterned with the receptors. This system has been specifically designed with commercially available components to allow relatively easy duplication. Furthermore, this system can use a proven, simple method to compensate for changes in the bulk index of refraction of the solution containing the analytes due to changes in temperature or solute concentration with simple modifications to the sensor chips alone. Preliminary results demonstrate how this system can be used to monitor several independent biospecific binding events simultaneously.  相似文献   

12.
An immunosensor based on surface plasmon resonance (SPR) with enhanced performance was developed through a mixed self-assembled monolayer. A mixture of 16- mercaptohexadecanic acid (16-MHA) and 1-undecanethiol with various molar ratios was self-assembled on gold (Au) surface and the carboxylic acid groups of 16-MHA were then coordinated to Zn ions by exposing the substrate to an ethanolic solution of Zn(NO(3))(2)d6H2O. The antibody was immobilized on the SPR surface by exposing the functionalized substrate to the desired solution of antibody in phosphatebuffered saline (PBS) molecules. The film formation in series was confirmed by SPR and atomic force microscopy (AFM). The functionalized surface was applied to develop an SPR immunosensor for detecting human serum albumin (HSA) and the estimated detection limit (DL) was 4.27 nM. The limit value concentration can be well measured between ill and healthy conditions.  相似文献   

13.
Para‐maleimidophenyl (p‐MP) modified gold surfaces have been prepared by one‐step electrochemical deposition and used in surface plasmon resonance (SPR) studies. Therefore, a FITC mimotope peptide (MP1, 12 aa), a human mucin 1 epitope peptide (MUC, 9 aa) and a protein with their specific antibodies were used as model systems. The peptides were modified with an N‐terminal cysteine for covalent and directed coupling to the maleimido functionalized surface by means of Michael addition. The coupling yield of the peptide, the binding characteristics of antibody and the unspecific adsorption of the analytes were investigated. The results expand the spectrum of biosensors usable with p‐MP by widely used SPR and support its potential to be versatile for several electrochemical and optical biosensors. This allows the combination of an electrochemical and optical read‐out for a broad variety of biomolecular interactions on the same chip. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A biosensor based on mammalian metallothionein (MT) for the detection of metal ions was developed and characterized. MT was immobilized onto a carboxymethylated dextran matrix as a biosensor for the detection of metal ions by surface plasmon resonance (SPR). The optimal pH for the immobilization step was determined to be 4. The temperature for the analysis was also defined, and the highest interaction was observed at 30 degrees C. The MT sensor chip binds cadmium (Cd), zinc (Zn) or nickel (Ni), but not magnesium (Mg), manganese (Mn) and calcium (Ca). Calibration curves for the quantification of metal ions showed excellent linearity. The sensitivity for metal detection is at the micromolar level. The interaction between the metal ions and the sensor chip is influenced significantly by the presence of NaCl, Tween 20 and the pH of the reaction buffer. By decreasing the NaCl in the reaction buffer to 1 mM, the MT chip effectively differentiates cadmium from zinc and nickel. Kinetic parameters of the metal-MT interactions were also determined by using this chip. The binding affinity between the metal ions and the immobilized MT follows the order of cadmium > zinc > nickel, which is the same as that determined for MT in solution. Thus, the MT chip can be an effective biosensor for the detection and measurement of several metal ions.  相似文献   

15.
A novel transmission-based localized surface plasmon resonance (LSPR) fiber-optic probe has been developed to determine the heavy metal cadmium ion (Cd(II)) concentration. The LSPR sensor was constructed by immobilizing phytochelatins (PCs), (gammaGlc-Cys)(8)-Gly, onto gold nanoparticle-modified optical fiber (NM(Au)OF). The optimal immobilizing conditions of PCs on to the NM(Au)OF are 71.6mug/ml PCs in pH 7.4 PBS for 2h. The absorbability (change of light absorption) of the PC-functionalized NM(Au)OF sensor increases to 9% upon changing the Cd(II) level from 1 to 8ppb with a sensitivity of 1.24ppb(-1) and a detection limit of 0.16ppb. The sensor retained 85% of its original activity after nine cycles of deactivation and reactivations. In addition, the sensor retains its activity and gives reproducible results after storage in 5% d-(+)-trehalose dehydrate solution at 4 degrees C for 35 days. The dissociation constant (K(d)) of the immobilized PCs with Cd(II) was about 6.77x10(-8)M. In conclusion, the PCs-functionalized NM(Au)OF sensor can be used to determine the concentration of Cd(II) with high sensitivity.  相似文献   

16.
We describe an antibody chip technology that uses a surface plasmon resonance (SPR) imaging system to examine the conformational change of a protein. In this study, we used Bax protein, a pro-apoptotic member of the Bcl-2 family of proteins, as a model protein to investigate the conformational alteration triggered by a TNF-related apoptosis-inducing ligand (TRAIL), a potent inducer of apoptosis. To develop the antibody chip for detecting the Bax conformational change, we immobilized Bax monoclonal antibody 6A7, which recognizes only a conformationally changed Bax protein on a gold surface. The resultant immobilized Bax antibodies provided specific and accurate measurements of the active conformation-specific epitope in the apoptotic cancer cells treated with the TRAIL; these measurements corresponded to the data obtained by immunoprecipitation analysis using an active conformation-specific Bax antibody (6A7). The results of our study indicated that TRAIL-induced Bax structural change could be monitored quickly and simply using an SPR imaging system, thus demonstrating the potential for using such a system for the analysis of conformational properties of target proteins.  相似文献   

17.
Liquid and gas chromatography are commonly used to measure organophosphorus pesticides. However, these methods are relatively time consuming and require a tedious sample pretreatment. Here, we applied the localized surface plasmon resonance (LSPR) of gold nanoparticles covalently coupled with acetylcholinesterase (AChE) to create a biosensor for detecting an example of serial signals responding to paraoxon in the range of 1-100 ppb by an AChE modified LSPR sensor immersing in a 0.05 mM ACh solution. The underlying mechanism is that paraoxon prevents acetylcholine chloride (ACh) reacting with AChE by destroying the OH bond of serine in AChE. We found that the AChE modified LSPR sensors prepared by incubation with 12.5 mU/mL of AChE in phosphate buffer solution at pH 8.5 room temperature for 14 h have the best linear inhibition response with a 0.234 ppb limit of paraoxon detection. A 14% of inhibition on the sensor corresponds to the change of paraoxon concentration from 1 to 100 ppb. The sensor remained 94% of its original activity after six cycles of inhibition with 500 ppb paraoxon followed with reactivation of AChE by 0.5 mM 2-pyriding-aldoxime methoiodide (2-PAM). In addition, the sensor retains activity and gives reproducible results after storage in dry state at 4 degrees C for 60 days. In conclusion, we demonstrated that the AChE modified LSPR sensors can be used to determine the concentration of paraoxon biosensor with high sensitive and stable characteristics.  相似文献   

18.
We report a real-time differential phase measurement technique which can be implemented in optical surface plasmon resonance biosensors. The important feature of our design is that sensitivity has been greatly improved by measuring the differential phase change between the s and p-polarizations. Real-time measurement capability is achieved by using a phase extracting routine which continuously monitors the waveforms captured by two photo-detectors. Measurement capability of our setup is demonstrated through real-time monitoring of bovine serum albumin (BSA)/anti-BSA binding reaction. The estimated sensitivity of our current setup is 7.4 ng/ml.  相似文献   

19.
The interactions between Ca2+ and C-reactive protein (CRP) have been characterized using a surface plasmon resonance (SPR) biosensor. The protein was immobilized on a sensor chip, and increasing concentrations of Ca2+ or phosphocholine were injected. Binding of Ca2+ induced a 10-fold higher signal than expected from the molecular weight of Ca2+. It was interpreted to result from the conformational change that occurs on binding of Ca2+. Two sites with different characteristics were distinguished: a high-affinity site with KD = 0.03 mM and a low-affinity site with KD = 5.45 mM. The pH dependencies of the two Ca2+ interactions were different and enabled the assignment of the different sites in the three-dimensional structure of CRP. There was no evidence for cooperativity in the phosphocholine interaction, which had KD = 5 μM at 10 mM Ca2+. SPR biosensors can clearly detect and quantify the binding of very small molecules or ions to immobilized proteins despite the theoretically very low signals expected on binding, provided that significant conformational changes are involved. Both the interactions and the conformational changes can be characterized. The data have important implications for the understanding of the function of CRP and suggest that Ca2+ is an efficient regulator under physiological conditions.  相似文献   

20.
In order to examine the possibility of the use of a surface plasmon resonance (SPR) sensor for real-time monitoring of the process of refolding of immobilized proteins, the refolding of firefly luciferase immobilized on a carboxymethyldextran matrix layer was analyzed. The SPR signal of the immobilized luciferase decreased after unfolding induced by GdnCl and increased gradually in the refolding buffer, while there was no signal change in the reference surface lacking the immobilized protein. The decrease in the SPR signal on unfolding was consistent with the difference between the refractive indices of the native and unfolded protein solutions. The effects of blocking of the excess NHS-groups of the matrix layer on the refolding yield were examined by means of an SPR sensor. The results were consistent with those obtained with the enzymatic activity assay, indicating that the changes in the SPR signal reflected the real-time conformational changes of the immobilized protein. Hence, an SPR biosensor might be used for monitoring of the process of refolding of immobilized proteins and as a novel tool for optimization of the refolding conditions. This is the first demonstration that SPR signal changes reflect the conformational changes of an immobilized protein upon unfolding and refolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号