首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have isolated four clones of integrated human papillomavirus type 16 (HPV-16) DNA from four different primary cervical cancer specimens. All clones were found to be monomeric or dimeric forms of HPV-16 DNA with cellular flanking sequences at both ends. Analysis of the viral sequences in these clones showed that E6/E7 open reading frames and the long control region were conserved and that no region specific for the integration was detected. Analysis of the cellular flanking sequences revealed no significant homology with any known human DNA sequences, except Alu sequences, and no homology among the clones, indicating no cellular sequence specific for the integration. By probing with single-copy cellular flanking sequences from the clones, it was demonstrated that the integrated HPV-16 DNAs, with different sizes in the same specimens, shared the same cellular flanking sequences at the ends. Furthermore, it was shown that the viral sequences together with cellular flanking sequences were amplified. The possible process of viral integration into cell chromosomes in cervical cancer is discussed.  相似文献   

4.
We have identified a region of human papillomavirus type 6 (HPV-6) DNA that hybridizes with human cellular DNA containing no detectable HPV DNA sequences. The region of hybridization has been localized to a segment of the viral long control region between the end of the L1 open reading frame and the late polyadenylation signal and is likely contained within a 94-base-pair insertion at nucleotide 7350 which is present in the cloned HPV-6b DNA used for these studies. Restriction fragments of HPV-6 DNA from seven patients suggested that this insert was present in these naturally occurring viral genomes as well. The presence of this insert was confirmed by direct sequence analysis of polymerase chain reaction-amplified segments from four naturally occurring HPV-6 genomes. By analogy with other systems, this insert and surrounding sequences may function to destabilize the HPV-6 late mRNA.  相似文献   

5.
We analyzed the long control regions (LCRs) of seven human papillomavirus type 6b (HPV-6b) clones, which contained prototype HPV-6b sequences recloned into various plasmid vectors and propagated in different strains of Escherichia coli. Southern blot analysis and DNA sequencing demonstrated three different sequences, each distinct from the published prototype HPV-6b sequence. Two of the plasmids contained insertions of 24 and 94 base pairs (bp) and a 1-bp deletion. Four plasmids contained insertions of 24 and 58 bp and a deletion of 49 bp. One plasmid contained a single insertion of 77 bp. The 94-, and 58-bp insertions occurred at the same site and had 100% positional identity across their shared lengths. All changes were located in the purine-thymidine-rich region of the LCR (nucleotides 7292 to 7400). Two additional LCR sequences were detected by restriction analysis of two other HPV-6b clones. We conclude that the purine-thymidine-rich region of the LCR is a hot spot for recombination in E. coli and that the alterations are the result of recA-independent events. These results emphasize the need to rigorously prove that a cloned isolate is an authentic copy of the genomic DNA present in the original lesion. In addition, the data indicate that the HPV-6b LCR sequences employed in different laboratories may be different, even if their parental DNAs were identical. Finally, we discuss the need for caution in assigning biological significance to alterations in this region, in view of the limited data available on the true identity of the HPV-6b LCR.  相似文献   

6.
We have investigated the structure of chicken genomic DNA homologous to v-ets, the second cell-derived oncogene of avian retrovirus E26. We isolated a c-ets locus spanning ca. 30.0 kilobase pairs (kbp) in the chicken genome with homologies to 1,202 nucleotides (nt) of v-ets (total length, 1,508 nt) distributed in six clusters along 18.0 kbp of the cloned DNA. The 5'-distal part of v-ets (224 nt) was homologous to chicken cellular sequences contained upstream within a single 16.0-kbp EcoRI fragment as two typical exons but not found transcribed into the major 7.5-kb c-ets (or 4.0-kb c-myb) RNA species. Between these two v-ets-related cellular sequences we found ca 40.0 kbp of v-ets-unrelated DNA. Finally, the most 3' region of homology to v-ets in the cloned DNA was shown to consist of a truncated exon lacking the nucleotides coding for the 16 carboxy-terminal amino acids of the viral protein but colinear to one of the two human c-ets loci, c-ets-2.  相似文献   

7.
Nucleotide sequence comparisons were performed on a highly heterogeneous region of three human cytomegalovirus strains, Toledo, Towne, and AD169. The low-passage, virulent Toledo genome contained a DNA segment of approximately 13 kbp that was not found in the Towne genome and a segment of approximately 15 kbp that was not found in the AD169 genome. The Towne strain contained approximately 4.7 kbp of DNA that was absent from the AD169 genome, and only about half of this segment was present, arranged in an inverted orientation, in the Toledo genome. These additional sequences were located at the unique long (UL)/b' (IRL) boundary within the L component of the viral genome. A region representing nucleotides 175082 to 178221 of the AD169 genome was conserved in all three strains; however, substantial reduction in the size of the adjacent b' sequence was found. The additional DNA segment within the Toledo genome contained 19 open reading frames not present in the AD169 genome. The additional DNA segment within the Towne genome contained four new open reading frames, only one of which shared homology with the Toledo genome. This comparison was extended to five additional clinical isolates, and the additional Toledo sequence was conserved in all. These findings reveal a dramatic level of genome sequence complexity that may explain the differences that these strains exhibit in virulence and tissue tropism. Although the additional sequences have not altered the predicted size of the viral genome (230 to 235 kbp), a total of 22 new open reading frames (denoted UL133 to UL154), many of which have sequence characteristics of glycoproteins, are now defined as cytomegalovirus specific. Our work suggests that wild-type virus carries more than 220 genes, some of which are lost by large-scale deletion and rearrangement of the UL/b' region during laboratory passage.  相似文献   

8.
The complete DNA genomes of four distinct human papilloma viruses (human papilloma virus subtype 1a [HPV-1a], HPV-1b, HPV-2a, and HPV-4) were molecularly cloned in Escherichia coli, using the certified plasmid vector pBR322. The restriction endonuclease patterns of the cloned HPV-1a and HPV-1b DNAs were similar to those already published for uncloned DNAs. Physical maps were constructed for HPV-2a DNA and HPV-4 DNA, since these viral DNAs had not been previously mapped. By using the cloned DNAs, the genomes of HPV-1a, HPV-2a, and HPV-4 were analyzed for nucleotide sequence homology. Under standard hybridization conditions (Tm = --28 degrees C), no homology was detectable among the genomes of these papilloma viruses, in agreement with previous reports. However, under less stringent conditions (i.e., Tm = --50 degrees C), stable DNA hybrids could be detected between these viral DNAs, indicating homologous segments in the genomes with approximately 30% base mismatch. By using specific DNA fragments immobilized on nitrocellulose filters, these regions of homology were mapped. Hybridization experiments between radiolabeled bovine papilloma virus type 1 (BPV-1) DNA and the unlabeled HPV-1a, HPV-2a, or HPV-4 DNA restriction fragments under low-stringency conditions indicated that the regions of homology among the HPV DNAs are also conserved in the BPV-1 genome with approximately the same degree of base mismatch.  相似文献   

9.
10.
11.
12.
13.
14.
15.
The complete nucleotide sequence of human papillomavirus type 1a (7811 nucleotides) has been established. The overall organization of the viral genome is different from that of other related papovaviruses (SV40, BKV, polyoma). Firstly, genetic information seems to be coded by one strand. Secondly, no significant homology is found with SV40 or polyoma coding sequence for either DNA or deducted protein sequences. The relatedness of human and bovine papillomaviruses is revealed by a conserved coding sequence in the two species. Two regions can be defined on the viral genome: the putative early region contains two large open reading frames of 1446 and 966 nucleotides, together with several split ones, and corresponds to the transforming part of the bovine papillomavirus type 1 genome, and the remaining sequences, which include two open reading frames likely to encode structural polypeptide(s). The DNA sequence is analysed and putative signals for regulation of gene expression, and homologies with the Alu family of human ubiquitous repeats and the SV40 72-bp repeat are outlines.  相似文献   

16.
Transient replication of human papillomavirus (HPV) type 18 DNA was shown to require the viral E1 and E2 proteins. A 108-bp sequence within the long control region (nucleotides 12 to 119) was sufficient to function as the origin, but maximal replication required a region of 177 bp from positions 7800 to 7857 and 1 to 119 of HPV-18. The E1 and E2 proteins of HPV-18 also supported transient replication of plasmids containing the origins of HPV-1a and bovine papillomavirus type 1 to low levels. Interestingly, the level of replication observed with the HPV-6b origin was higher than that obtained with the homologous HPV-18 origin.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号