首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanistic Approaches to Community Ecology: A New Reductionism   总被引:2,自引:0,他引:2  
Mechanistic approaches to community ecology are those whichemploy individual— ecological concepts—those ofbehavioral ecology, physiological ecology, and ecomorphology—as theoretical bases for understanding community patterns. Suchapproaches, which began explicitly about a decade ago, are justnow coming into prominence. They stand in contrast to more traditionalapproaches, such as MacArthur and Levins (1967),which interpretcommunity ecology almost strictly in terms of "megaparameters.". Mechanistic approaches can be divided into those which use populationdynamics as a major component of the theory and those whichdo not; examples of the two are about equally common. The firstapproach sacrifices a highly detailed representation of individual—ecological processes; the second sacrifices an explicit representationof the abundance and persistence of populations. Three subdisciplines of ecology—individual, populationand community ecology—form a "perfect" hierarchy in Beckner's(1974) sense. Two other subdisciplines—ecosystem ecologyand evolutionary ecology—lie somewhat laterally to thishierarchy. The modelling of community phenomena using sets ofpopulation-dynamical equations is argued as an attempt at explanationvia the reduction of community to population ecology. Much ofthe debate involving Florida State ecologists is over whetheror not such a relationship is additive (or conjunctive), a verystrong form of reduction. I argue that reduction of communityto individual ecology is plausible via a reduction of populationecology to individual ecology. Approaches that derive the population-dynamicalequations used in population and community ecology from individual-ecologicalconsiderations, and which provide a decomposition of megaparametersinto behavioral and physiological parameters, are cited as illustratinghow the reduction might be done. I argue that "sufficient parameters"generally will not enhance theoretical understanding in communityecology. A major advantage of the mechanistic approach is that variationin population and community patterns can be understood as variationin individual-ecological conditions. In addition to enrichingthe theory, this allows the best functional form to be chosenfor modeling higher-level phenomena, where "best" is definedas biologically most appropriate rather than mathematicallymost convenient. Disadvantages of the mechanistic approach arethat it may portend an overly complex, massive and special theory,and that it naturally tends to avoid many-species phenomenasuch as indirect effects. The paper ends with a scenario fora mechanistic-ecological utopia.  相似文献   

2.
The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.  相似文献   

3.
Persistence is a central issue in population ecology with important implications for population management. Most theoretical studies have focused on continually interacting populations, even though many systems are subject to ecological disturbances which confound analysis of persistence. In this paper, we use a combination of a simple parasite–hyperparasite model with disturbances and field data to investigate the factors contributing to the observed persistence of the parasite population. The field data are taken from a two-year experiment (including five growing seasons) investigating the use of the mycoparasite Sporidesmium sclerotivorum as a persistent biological control agent of Sclerotinia minor, an economically important fungal parasite of lettuce. We show that the standard assumption of homogeneous mixing fails to predict the observed persistence of the parasite population. We demonstrate that allowing for heterogeneous mixing prevents the fade-out predicted in the homogeneous mixing case. The implications of the results for broad classes of host–parasite systems are discussed.  相似文献   

4.

Background

The effects of landscape modifications on the long-term persistence of wild animal populations is of crucial importance to wildlife managers and conservation biologists, but obtaining experimental evidence using real landscapes is usually impossible. To circumvent this problem we used individual-based models (IBMs) of interacting animals in experimental modifications of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of four species with contrasting life-history characteristics: skylark (Alauda arvensis), vole (Microtus agrestis), a ground beetle (Bembidion lampros) and a linyphiid spider (Erigone atra). This allows us to quantify the population implications of experimental modifications of landscape configuration and composition.

Methodology/Principal Findings

Starting with a real agricultural landscape, we progressively reduced landscape complexity by (i) homogenizing habitat patch shapes, (ii) randomizing the locations of the patches, and (iii) randomizing the size of the patches. The first two steps increased landscape fragmentation. We assessed the effects of these manipulations on the long-term persistence of animal populations by measuring equilibrium population sizes and time to recovery after disturbance. Patch rearrangement and the presence of corridors had a large effect on the population dynamics of species whose local success depends on the surrounding terrain. Landscape modifications that reduced population sizes increased recovery times in the short-dispersing species, making small populations vulnerable to increasing disturbance. The species that were most strongly affected by large disturbances fluctuated little in population sizes in years when no perturbations took place.

Significance

Traditional approaches to the management and conservation of populations use either classical methods of population analysis, which fail to adequately account for the spatial configurations of landscapes, or landscape ecology, which accounts for landscape structure but has difficulty predicting the dynamics of populations living in them. Here we show how realistic and replicable individual-based models can bridge the gap between non-spatial population theory and non-dynamic landscape ecology. A major strength of the approach is its ability to identify population vulnerabilities not detected by standard population viability analyses.  相似文献   

5.
A theory is considered which can explain the apparent persistence of butterfly populations containing a special type of females producing all-female broods. Under normal circumstances it would be expected that these populations should become extinct, but this does not happen in nature. The theory is based on the possibility of a balance between populations dying out and habitats being recolonized. It is shown that a stable equilibrium can exist in a simple model leading to a set of differential equations and also in a more realistic simulation model. The first approach may have a bearing on certain prey-predator systems as well.  相似文献   

6.
Abstract

Disassortative mating in distylous self-incompatible species should result in the equilibrium of morph types in natural populations. Deviation from isoplethy may affect pollen transfer, and in isolated populations it could lead to Allee effect and genetic drift. Pollen limitation has been found to occur in several distylous species, for which mating opportunities are actually reduced to half population. In this study, we investigated the reproductive features and pollination ecology of the narrow endemic Primula apennina. We recorded equilibrium of morph frequencies in the studied population, reflecting the comparable fecundity found in the two morphs. Long-styled flowers produce more pollen grains of smaller size than short-styled ones: we hypothesize that in thrum flowers, pollen is more easily removed by the insect pollinator Macroglossum stellatarum, resulting in equal pollen amounts carried to both short styles and long styles. This lower pollen transfer efficiency from long-styled to short-styled flowers is also reflected in legitimate pollen–ovule ratio values. Despite results show no evidence of imminent threats to population persistence at study site, the strict dependence on one or very few pollinator species, and ecological traits, may increase extinction risks in the long-term period.  相似文献   

7.
There is growing evidence that genetic and ecological factors interact in determining population persistence. The demographic effects of inbreeding depression can largely depend on the ecological milieu. We used demographic data of the perennial herb Succisa pratensis from six populations in grazed and ungrazed sites with different soil moisture. We built an individual-based model assessing the demographic consequences of inbreeding depression in populations with different management and habitat. Today this plant has to cope with severe landscape fragmentation, deteriorating habitat conditions in terms of decreasing grazing intensity, and the effects of inbreeding depression. For each population we performed simulations testing two inbreeding depression hypotheses (partial dominance and overdominance) and three epistatic functions among loci. The results indicated stronger inbreeding depression effects for populations in unfavourable sites without grazing or in xeric habitats compared to populations in favourable mesic sites with grazing. Overall, we found stronger effects with overdominance, a result that emphasizes the importance of understanding the genetic mechanisms of inbreeding depression. Hence, management practices can interact with the genetic consequences of inbreeding depression in population dynamics, which may have important implications for plant population ecology and evolutionary dynamics of inbreeding depression.  相似文献   

8.
Counterintuitive dynamics of various biological phenomena occur when composite system dynamics differ qualitatively from that of their component systems. Such composite systems typically arise when modelling situations with time-varying biotic or abiotic conditions, and examples range from metapopulation dynamics to population genetic models. These biological, and related physical, phenomena can often be modelled as simple financial games, wherein capital is gained and lost through gambling. Such games have been developed and used as heuristic devices to elucidate the processes at work in generating seemingly paradoxical outcomes across a spectrum of disciplines, albeit in a field-specific, ad hoc fashion. Here, we propose that studying these simple games can provide a much deeper understanding of the fundamental principles governing paradoxical behaviours in models from a diversity of topics in evolution and ecology in which fluctuating environmental effects, whether deterministic or stochastic, are an essential aspect of the phenomenon of interest. Of particular note, we find that, for a broad class of models, the ecological concept of equilibrium reactivity provides an intuitive necessary condition that must be satisfied in order for environmental variability to promote population persistence. We contend that further investigations along these lines promise to unify aspects of the study of a range of topics, bringing questions from genetics, species persistence and coexistence and the evolution of bet-hedging strategies, under a common theoretical purview.  相似文献   

9.
It is increasingly recognized that evolution may occur in ecological time. It is not clear, however, how fast evolution – or phenotypic change more generally – may be in comparison with the associated ecology, or whether systems with fast ecological dynamics generally have relatively fast rates of phenotypic change. We developed a new dataset on standardized rates of change in population size and phenotypic traits for a wide range of species and taxonomic groups. We show that rates of change in phenotypes are generally no more than 2/3, and on average about 1/4, the concurrent rates of change in population size. There was no relationship between rates of population change and rates of phenotypic change across systems. We also found that the variance of both phenotypic and ecological rates increased with the mean across studies following a power law with an exponent of two, while temporal variation in phenotypic rates was lower than in ecological rates. Our results are consistent with the view that ecology and evolution may occur at similar time scales, but clarify that only rarely do populations change as fast in traits as they do in abundance.  相似文献   

10.
The influence of sociality on the conservation biology of social insects   总被引:6,自引:0,他引:6  
Social insects (ants, bees, wasps and termites) as a group are species rich and ecologically dominant. Many are outstanding "ecological engineers", or providers of "ecosystem services", or potential bioindicator species. Few social insects are currently formally classified as Threatened, but this is almost certainly due to a lack of information on population sizes and trends in scarce species. The main influence that sociality has on threats faced by social insects is in reducing effective population sizes, increasing population genetic subdivision and possibly reducing levels of genetic variation relative to solitary species. The main influence that sociality has on threats from social insects is via its role in the ecological success of invasive species, which frequently pose a major hazard to native biotas. In some cases, social features underpinning ecological success in the original range almost certainly contribute to the success of invasive social insects. However, recent studies show or strongly suggest that, in some of the most notoriously invasive populations of ants, bees and wasps, novel social traits have arisen that greatly enhance the rate of spread and ecological competitiveness of these populations. Sociality can therefore represent either a liability or an asset in its contribution to the persistence of social insect populations.  相似文献   

11.
The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of those species that rely on cooperation for their survival.  相似文献   

12.
A predator-prey population is described in which the prey population may be either a secondary host or a primary host to a parasite, but the predator is always a primary host. Those prey that have been invaded by the parasite have their behavior modified so as to make them more susceptible to predation. The model is described by a system of three autonomous ordinary differential equations. Conditions for persistence of all populations are given in the case that both populations are primary hosts. A brief discussion of the stability of the interior equilibrium is given.  相似文献   

13.
The nonlinear behavior of the Holling-Tanner predatory-prey differential equation system, employed by R.M. May to illustrate the apparent robustness of Kolmogorov’s Theorem when applied to such exploitation systems, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature-dependent mite interaction on fruit trees. The most significant result of this analysis is that there exists a temperature range wherein multiple stable states can occur, in direct violation of May’s interpretation of this system’s satisfaction of Kolmogorov’s Theorem: namely, that linear stability predictions have global consequences. In particular these stable states consist of a focus (spiral point) and a limit cycle separated from each other in the phase plane by an unstable limit cycle, all of which are associated with the single community equilibrium point of the system. The ecological implications of such metastability, hysteresis, and threshold behavior for the occurrence of outbreaks, the persistence of oscillations, the resiliency of the system, and the biological control of mite populations are discussed.  相似文献   

14.
Xu J  Sha T  Li YC  Zhao ZW  Yang ZL 《Molecular ecology》2008,17(5):1238-1247
Effective conservation and utilization strategies for natural biological resources require a clear understanding of the natural populations of the target organisms. Tricholoma matsutake is an ectomycorrhizal mushroom that forms symbiotic associations with plants and plays an important ecological role in natural forest ecosystems in many parts of the world. It is also an economically very important gourmet mushroom. Because no artificial cultivation is available, natural populations of this species are under increasing threats, primarily from habitat disturbance and destruction. Despite its economical and ecological importance, little is known about its genetics and population biology. Here, using 14 polymerase chain reaction–restriction fragment length polymorphism markers, we analysed 154 strains from 17 geographical locations in southwestern China, a region where over 25% of the global T. matsutake harvest comes from. Our results revealed abundant genetic variation within individual populations. The analyses of gene and genotype frequencies within populations indicated that most loci did not deviate from Hardy–Weinberg equilibrium in most populations and that alleles among loci were in linkage equilibrium in the majority of the local populations. These results are consistent with the hypothesis that sexual reproduction and recombination play an important role in natural populations of this species. Our analyses indicated low but significant genetic differentiation among the geographical populations, with a significant positive correlation between genetic distance and geographical distance. We discuss the implications of our results to the ecology and resource management of this species.  相似文献   

15.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

16.
Many predator–prey systems are found in environments with a predominantly unidirectional flow such as streams and rivers. Alterations of natural flow regimes (e.g., due to human management or global warming) put biological populations at risk. The aim of this paper is to devise a simple method that links flow speeds (currents) with population retention (persistence) and wash-out (extinction). We consider systems of prey and specialist, as well as generalist, predators, for which we distinguish the following flow speed scenarios: (a) coexistence, (b) persistence of prey only or (c) predators only (provided they are generalists), and (d) extinction of both populations. The method is based on a reaction–advection–diffusion model and traveling wave speed approximations. We show that this approach matches well spread rates observed in numerical simulations. The results from this paper can provide a useful tool in the assessment of instream flow needs, estimating the flow speed necessary for preserving riverine populations.  相似文献   

17.
Stepping-stone models for the ecological dynamics of metapopulations are often used to address general questions about the effects of spatial structure on the nature and complexity of population fluctuations. Such models describe an ensemble of local and spatially isolated habitat patches that are connected through dispersal. Reproduction and hence the dynamics in a given local population depend on the density of that local population, and a fraction of every local population disperses to neighboring patches. In such models, interesting dynamic phenomena, e.g. the persistence of locally unstable predator-prey interactions, are only observed if the local dynamics in an isolated patch exhibit non-equilibrium behavior. Therefore, the scope of these models is limited. Here we extend these models by making the biologically plausible assumption that reproductive success in a given local habitat not only depends on the density of the local population living in that habitat, but also on the densities of neighboring local populations. This would occur if competition for resources occurs between neighboring populations, e.g. due to foraging in neighboring habitats. With this assumption of quasi-local competition the dynamics of the model change completely. The main difference is that even if the dynamics of the local populations have a stable equilibrium in isolation, the spatially uniform equilibrium in which all local populations are at their carrying capacity becomes unstable if the strength of quasi-local competition reaches a critical level, which can be calculated analytically. In this case the metapopulation reaches a new stable state, which is, however, not spatially uniform anymore and instead results in an irregular spatial pattern of local population abundance. For large metapopulations, a huge number of different, spatially non-uniform equilibrium states coexist as attractors of the metapopulation dynamics, so that the final state of the system depends critically on the initial conditions. The existence of a large number of attractors has important consequences when environmental noise is introduced into the model. Then the metapopulation performs a random walk in the space of all attractors. This leads to large and complicated population fluctuations whose power spectrum obeys a red-shifted power law. Our theory reiterates the potential importance of spatial structure for ecological processes and proposes new mechanisms for the emergence of non-uniform spatial patterns of abundance and for the persistence of complicated temporal population fluctuations.  相似文献   

18.
Conventional theories of population and community dynamics are based on a single currency such as number of individuals, biomass, carbon or energy. However, organisms are constructed of multiple elements and often require them (in particular carbon, phosphorus and nitrogen) in different ratios than provided by their resources; this mismatch may constrain the net transfer of energy and elements through trophic levels. Ecological stoichiometry, the study of the balance of elements in ecological processes, offers a framework for exploring ecological effects of such constraints. We review recent theoretical and empirical studies that have considered how stoichiometry may affect population and community dynamics. These studies show that stoichiometric constraints can affect several properties of populations (e.g. stability, oscillations, consumer extinction) and communities (e.g. coexistence of competitors, competitive interactions between different guilds). We highlight gaps in general knowledge and focus on areas of population and community ecology where incorporation of stoichiometric constraints may be particularly fruitful, such as studies of demographic bottlenecks, spatial processes, and multi-species interactions. Finally, we suggest promising directions for new research by recommending potential study systems (terrestrial insects, detritivory-based webs, soil communities) to improve our understanding of populations and communities. Our conclusion is that a better integration of stoichiometric principles and other theoretical approaches in ecology may allow for a richer understanding of both population and community structure and dynamics.  相似文献   

19.
The impact of intraspecific interactions on ecological stability and population persistence in terms of steady state(s) existence is considered theoretically based on a general competition model. We compare persistence of a structured population consisting of a few interacting (competitive) subpopulations, or groups, to persistence of the corresponding unstructured population. For a general case, we show that if the intra-group competition is stronger than the inter-group competition, then the structured population is less prone to extinction, i.e. it can persist in a parameter range where the unstructured population goes extinct. For a more specific case of a population with hierarchical competition, we show that relative viability of structured and unstructured populations depend on the type of density dependence in the population growth. Namely, while in the case of logistic growth, structured and unstructured populations exhibit equivalent persistence; in the case of Allee dynamics, the persistence of a hierarchically structured population is shown to be higher. We then apply these results to the case of behaviourally structured populations and demonstrate that an extreme form of individual aggression can be beneficial at the population level and enhance population persistence.  相似文献   

20.
The relationship between ectotherm ecology and climatic conditions has been mainly evaluated in terms of average conditions. Average temperature is the more common climatic variable used in physiological and population studies, and its effect on individual and population-level processes is well understood. However, the intrinsic variability of thermal conditions calls attention to the potential effects that this variability could have in ecological systems. Regarding this point, two hypotheses are proposed. From the allocation principle, it may be inferred that if temperature variability is high enough to induce stress in the organisms, then this extra-cost should reduce the energetic budget for reproduction, which will be reflected in population parameters. Moreover, a mathematical property of non-linear functions, Jensen’s inequality, indicates that, in concave functions, like the temperature–reproduction performance function, variability reduces the expected value of the output variable, and again modifies population parameters. To test these hypotheses, experimental cultures of Tribolium confusum under two different thermal variability regimens were carried out. With these data, we fitted a simple population dynamics model to evaluate the predictions of our hypothesis. The results show that thermal variability reduces the maximum reproductive rate of the population but no other parameters such as carrying capacity or the nonlinear factor in a nonlinear version of the Ricker model, which confirms our hypotheses. This result has important consequences, such as the paradoxical increase in population variability under a decrease in thermal variability and the necessary incorporation of climatic variability to evaluate the net effect of climate change on the dynamics of natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号