首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trans splicing of mRNA precursors   总被引:34,自引:0,他引:34  
D Solnick 《Cell》1985,42(1):157-164
  相似文献   

2.
3.
Trans splicing of nematode pre-messenger RNA in vitro   总被引:9,自引:0,他引:9  
G J Hannon  P A Maroney  J A Denker  T W Nilsen 《Cell》1990,61(7):1247-1255
In nematodes, a fraction of mRNAs contains a common 22 nucleotide 5' terminal spliced leader (SL) sequence derived by trans splicing. Here, we show that a cell-free extract prepared from developing embryos of the parasitic nematode Ascaris lumbricoides catalyzes accurate and efficient SL addition to a synthetic pre-mRNA at an authentic trans splice acceptor site. SL addition occurs via a trans splicing reaction that proceeds through Y-branched intermediates. The branchpoint is located at either of two adenosine residues located 18 and 19 nucleotides upstream of the splice acceptor site.  相似文献   

4.
Yeast mRNA splicing in vitro   总被引:89,自引:0,他引:89  
Synthetic actin and CYH2 pre-mRNAs containing a single intron are accurately spliced in a soluble whole cell extract of yeast. Splicing in vitro requires ATP. The excised intron is released as a lariat in which an RNA branch connects the 5' end of the molecule to the last A in the "intron conserved sequence" UACUAAC. Two other discrete RNA species produced during splicing in vitro may represent reaction intermediates: free, linear exon 1 and a form of the intron lariat extending beyond the 3' splice site to include exon 2. Both lariat forms correspond to molecules previously shown to be produced during yeast pre-mRNA splicing in vivo.  相似文献   

5.
Trans splicing of nuclear pre-mRNAs   总被引:58,自引:0,他引:58  
N Agabian 《Cell》1990,61(7):1157-1160
  相似文献   

6.
7.
Trans splicing in trypanosomes--archaism or adaptation?   总被引:19,自引:0,他引:19  
  相似文献   

8.
9.
10.
cyt18-1 (299-9) is a nuclear mutant of Neurospora crassa that has been shown to have a temperature-sensitive defect in splicing the mitochondrial large rRNA intron. In the present work, we investigate the effect of the cyt18-1 mutation on splicing of mitochondrial mRNA introns. Two genes were studied in detail; the cytochrome b (cob) gene, which contains two introns, and a "long form" of the cytochrome oxidase subunit I (coI) gene, which contains four introns. We found that splicing of both cob introns and splicing of at least two of the coI introns are strongly inhibited in the mutant, whereas splicing of coI intron 1, which is excised as a 2.6 X 10(3) base circle, is relatively unaffected. The rRNA intron and both cob introns are group I introns, whereas the circular coI intron may belong to another structural class. Control experiments showed that the degree of inhibition of splicing is greater in the mutant than can be accounted for by severe inhibition of mitochondrial protein synthesis. Finally, experiments in which mutant cells were shifted from 25 degrees C to 37 degrees C showed that splicing of the large rRNA precursor and splicing of the coI mRNA precursor are inhibited with similar kinetics. Considered together, our results suggest that the cyt18 gene encodes a trans-acting component that is required for the splicing of group I mitochondrial DNA introns or some subclass thereof. Since Neurospora cob intron 1 has been shown to be self-splicing in vitro, defective splicing of this intron in cyt18-1 indicates that an essentially RNA-catalyzed splicing reaction must be facilitated by a trans-acting factor, presumably a protein, in vivo.  相似文献   

11.
12.
The genes coding for NADH dehydrogenase subunit 5 (nad5) in mitochondria of the higher plants Oenothera and Arabidopsis are split into five exons that are located in three distant genomic regions. These encode exons a + b, c and d + e, respectively. Maturation of the mRNAs requires two trans splicing events to integrate exon c of only 22 nucleotides. Both trans splicing reactions involve mitochondrial group II intron sequences that allow base pairings in the interrupted domain IV, demonstrating the flexibility of intron structures. The observation of fragmented intron sequences in plant mitochondria suggests that trans splicing is more widespread than previously assumed. RNA editing by C to U alterations in both Oenothera and Arabidopsis open reading frames improves the evolutionary conservation of the encoded polypeptides. Three C to U RNA editing events were observed in intron sequences.  相似文献   

13.
A single cardiac troponin T (cTNT) gene generates two mRNAs by including or excluding the 30-nucleotide exon 5 during pre-mRNA processing. Transfection analysis of cTNT minigenes has previously demonstrated that both mRNAs are expressed from unmodified minigenes, and mutations within exon 5 can lead to complete skipping of the exon. These results suggested a role for exon sequence in splice site recognition. To investigate this potential role, an in vitro splicing system using cTNT precursors has been established. Two-exon precursors containing the alternative exon and either the upstream exon or downstream exon were spliced accurately and efficiently in vitro. The mutations within the alternative exon that resulted in exon skipping in vivo specifically blocked splicing of the upstream intron in vitro and had no effect on removal of the downstream intron. In addition, the splicing intermediates of these two precursors have been characterized, and the branch sites utilized on the introns flanking the alternative exon have been determined. Potential roles of exon sequence in splice site selection are discussed. These results establish a system that will be useful for the biochemical characterization of the role of exon sequence in splice site selection.  相似文献   

14.
15.
Yuan Zhuang  Alan M. Weiner 《Gene》1990,90(2):263-269
We have previously used site-directed mutagenesis to introduce an additional branch site into the first intron of the human β-globin gene at nt −24 between the natural branch site (nt−37) and the normal 3′ splice site (nt−1). We found that either the upstream or downstream branch site could be used during in vitro splicing, depending on which site best matched the mammalian branch site consensus YURAC (R = purine; Y = pyrimidine). Here we show that introduction of an additional AG dinucleotide at nt −20 between the downstream branch site and the normal 3′ splice site results in alternative 3′ splicing. Splicing to the new AG uses the upstream branch site exclusively, presumably because the downstream branch site is only 4 nt from this 3′ splice site. We were surprised, however, to find that the presence of the new AG also prevents the use of the upstream branch site for splicing to the normal 3′ splice site. Analysis of additional mutants confirmed earlier work [Krainer et al.: Mechanisms of human β-globin pre-mRNA splicing. In Berg, P. (Ed.), The Robert A. Welch Foundation Conferences on Chemical Research XXIX. Genetic Chemistry: The Molecular Basis of Heredity. Welch Foundation, Houston, TX, 1985, pp. 353–382] that the new AG cannot function by itself as a complete 3′ splice site; rather, it appears that alternative 3′ splicing initiates at the normal 3′ splices site but then searches, once the reaction is underway, for the first AG downstream from the chosen branch site. Taken together, our data suggest that the conserved AG dinucleotide at the 3′ splice site may be recognized twice during mammalian mRNA splicing in vitro.  相似文献   

16.
17.
In vitro splicing of simian virus 40 early pre mRNA.   总被引:11,自引:8,他引:11       下载免费PDF全文
The products of splicing of simian virus 40 early pre mRNA in HeLa cell nuclear extracts have been characterized. Of the two alternative splicing patterns exhibited by this precursor in vivo, which involve the use of alternative large T and small t 5' splice sites and a single shared 3' splice site, only one, producing large T mRNA, was found to occur in vitro. A number of possible intermediates and byproducts of splicing of large T mRNA were observed, including free large T 5' exon, lariat form intron joined to 3' exon and free lariat and linear forms of large T intron. The formation of these products argues strongly for a basic similarity in the mechanism underlying large T and other, non-alternative splices. A collection of RNAs resulting from protection of early pre mRNA at specific points from an endogenous 5' to 3' exonuclease activity in vitro have also been observed. The regions of the precursor RNA protected map to positions immediately upstream of the 5' splice sites of large T and small t and the lariat branchpoint, and may represent interaction of these regions with components of the splicing machinery.  相似文献   

18.
The yeast RNA gene products are essential for mRNA splicing in vitro   总被引:43,自引:0,他引:43  
A J Lustig  R J Lin  J Abelson 《Cell》1986,47(6):953-963
The yeast rna mutations (rna2-rna11) are a set of temperature-sensitive mutations that result in the accumulation of intron-containing mRNA precursors at the restrictive temperature. We have used the yeast in vitro splicing system to investigate the role of products of the RNA genes in mRNA splicing. We have tested the heat lability of the in vitro mRNA splicing reaction in extracts isolated from mutant and wild-type cells. Extracts isolated from seven of the nine rna mutants demonstrated heat lability in this assay, while most wild-type extracts were stable under the conditions utilized. We have also demonstrated that heat inactivation usually results in the specific loss of an exchangeable component by showing that most combinations of heat-inactivated extracts from different mutants complement one another. In three cases (rna2, rna5, and rna11), the linkage of the in vitro defect to the rna mutations was ascertained by a combination of reversion, tetrad, and in vitro complementation analyses. Furthermore, each heat-inactivated extract was capable of complementation by at least one fraction of the wild-type splicing system. Thus many of the RNA genes are likely to code for products directly involved in and essential for mRNA splicing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号