首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Terminal cell differentiation usually results in an irreversible arrest in the G1 phase of the cell cycle and loss of cell renewal ability. Human promyelocytic leukemia HL-60 cells induced with 12-o-tetradecanoylphorbol-13-acetate (TPA) differentiate into monocytes/macrophages and accumulate in G1. We determined the effect of TPA on the growth kinetics of a human leukemia cell line (KOPM-28), which developed several of the characteristics of megakaryocytes in response to TPA, such as the surface antigen complex IIb/IIIa, platelet peroxidase and polyploidy. Cell growth was immediately and completely inhibited by TPA. Flow cytometric analysis of cellular DNA content revealed a gradual decrease in cells in G1 and an accumulation of cells in G2. These data suggest that TPA prolonged G1 and rapidly arrested the cells in G2. Synchronized cells were utilized to further analyze the rapid G2 arrest. Cells arrested with aphidicolin at the G1/S interphase were released, and the effects of TPA (added at different intervals) on cell cycle progression were examined 14 h after release. The results showed that TPA added at the end of the S phase, as well as at the G1/S interphase incompletely but distinctly arrested cells in G2. Moreover, G2 arrest was observed when TPA was added to cells released from a colcemid-induced G2/M block, suggesting that cells already in G2 were inhibited by TPA from moving through M to G1. Since some cells became multi-nucleated in the course of incubation with TPA, this G2 accumulation may have resulted at least in part from a prolongation of the phase or a transient G2 block. These changes in cell cycle progression induced by TPA may be characteristic of and/or related to megakaryocytic differentiation of hemopoietic precursor cells.  相似文献   

2.
A 35,000 mw factor able to replace macrophages (FRM) in the induction of the in vitro antibody response to sheep erythrocytes has been isolated from the supernatant of murine resident peritoneal macrophage cultures. Purified FRM, when added at the outset of cultures, induced B cells to generate an antigen-specific antibody response. The signals provided by FRM in the process of B cell activation were analyzed using a polyclonal model. Cell cycle analysis by multiparameter flow cytometry after acridine orange staining showed that FRM, on its own, did not trigger the transition of B cells from the G0 to the G1 stage of the cell cycle. In addition, FRM affected neither the basal intracellular free calcium level ([Ca2+]i) nor the rapid increase in [Ca2+]i induced by crosslinking of membrane immunoglobulin (mIgM) with anti-mu antibodies. In parallel with its positive effect on B cell differentiation, FRM markedly reduced both proliferation and cell cycle progression of B cells stimulated with anti-mu plus interleukin 4 (IL-4). Indeed, the addition of FRM to such cultures led to a preferential accumulation of cells in the early G1 compartment of the cell cycle and to a decreased frequency of cells in all other phases including G1B, S and G2/M.  相似文献   

3.
Human cytomegalovirus infection inhibits G1/S transition.   总被引:5,自引:1,他引:4       下载免费PDF全文
Cell cycle progression during cytomegalovirus infection was investigated by fluorescence-activated cell sorter (FACS) analysis of the DNA content in growth-arrested as well as serum-stimulated human fibroblasts. Virus-infected cells maintained in either low (0.2%) or high (10%) serum failed to progress into S phase and failed to divide. DNA content analysis in the presence of G1/S (hydroxyurea and mimosine) and G2/M (nocodazole and colcemid) inhibitors demonstrated that upon virus infection of quiescent (G0) cells, the cell cycle did not progress beyond the G1/S border even after serum stimulation. Proteins which normally indicate G1/S transition (proliferating cell nuclear antigen [PCNA]) or G2/M transition (cyclin B1) were elevated by virus infection. PCNA levels were induced in infected cells and exhibited a punctate pattern of nuclear staining instead of the diffuse pattern observed in mock-infected cells. Cyclin B1 was induced in infected cells which exhibited a G1/S DNA content by FACS analysis, suggesting that expression of this key cell cycle function was dramatically altered by viral functions. These data demonstrate that contrary to expectations, cytomegalovirus inhibits normal cell cycle progression. The host cell is blocked prior to S phase to provide a favorable environment for viral replication.  相似文献   

4.
The effect of the tumor promoter okadaic acid on cell cycle progression and on vimentin expression in MPC-11 mouse plasmacytoma cells was compared with that of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Cell cycle progression of asynchronously grown MPC-11 cells was inhibited by both agents, but, in contrast to the G1 phase arrest caused by TPA, okadaic acid gave rise to G2/M phase and S phase arrest. This effect of okadaic acid was delayed significantly compared to the TPA-caused arrest. Furthermore, okadaic acid was able to induce vimentin expression to an extent comparable to the TPA response. However, vimentin expression was markedly delayed in okadaic acid-treated relative to TPA-treated cells. Another protein phosphatase inhibitor, calyculin A, also induced cell cycle changes and vimentin expression at concentrations at or above 1 × 10?9M. Based on these observations, we suggest an involvement of protein phosphatase 1 (possibly also phosphatase 2A and/or other phosphatases) in both the G2/M cell cycle block and the induction of vimentin expression in MPC-11 cells by okadaic acid. © 1995 Wiley-Liss, Inc.  相似文献   

5.
目的:通过,IPA诱导K562细胞分化过程中干预细胞铁代谢探讨白血病细胞铁与细胞分化的关系及对EGR1mRNA表达的影响。方法:应用体外细胞培养技术通过细胞形态,细胞化学染色观察细胞生长分化情况;用FCM、RT—PCR等技术检细胞周期、细胞表面分化抗原CD33、CD14及EGR1mRNA的表达。结果:在,IPA诱导K562细胞分化过程中铁剥夺可明显抑制K562细胞生长,并可阻止,IPA诱导K562细胞分化,使K562细胞停止在S期。铁剥夺可降低,TPA诱导K562细胞分化过程中EGR1mRNA的表达。讨论:铁剥夺明显抑制K562细胞生长、阻止TPA诱导K562细胞分化,故铁剥夺剂(DFO)可能作为一种辅助抗癌药用于白血病的化疗,但由于它能阻止白血病细胞的分化,故不宜用于白血病的诱导分化治疗。铁剥夺使K562细胞分化过程中E—GR1mRNA表达降低可能参与了阻止TPA诱导K562细胞的分化过程。  相似文献   

6.
High resolution, multiparameter analysis using the flow cytometric BrdU/Hoechst quenching technique has been applied to study cell cycle kinetics and vimentin expression in individual cells of asynchronously grown MPC-11 mouse plasmacytoma cell cultures treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) to induce in vitro differentiation. BrdU treatment up to 16 h in the absence or presence of TPA did not affect either cell cycle progression or the kinetics or quantity of vimentin expression. TPA-treated cells became arrested in G1 phase of the second cell cycle; however, this G1 phase arrest was transient only. In addition, G1 phase cells located prior to a putative transition point at the beginning of TPA treatment were completely blocked in cell cycle progression. There is also evidence that cells located in G1 or G2/M phase at the beginning of TPA treatment finally expressed low levels of vimentin. On the contrary, cells located in S phase at TPA exposure showed high vimentin levels after treatment. The results presented here show that, with the flow cytometric BrdU/Hoechst quenching technique, one can correlate time-dependent protein expression at the single cell level in asynchronously grown cultures not only with the actual cell cycle state, but also with the history of cell replication. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Vimentin expression throughout the cell cycle has been analyzed at the single-cell level in asynchronously growing MPC-11 cells using multiparameter flow cytometry. We have previously shown that these cells normally lack detectable amounts of intermediate filament proteins. In the presence of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), cell proliferation ceases and large quantities of the intermediate filament protein vimentin are synthesized and accumulate in most of the cells. In the present study, the short-term effect of TPA on distribution of cells within the cell cycle was a depletion in early S phase followed by a depletion in mid- and late S phase. In parallel, the G1-phase fraction increased significantly. In addition, a delay in progression through G2/M phase was observed. These data strongly suggest an inhibition of progression of cells through the cell cycle in G1 phase as the primary event on cell cycle kinetics elicited by TPA. Vimentin accumulation could be detected by flow cytometry as early as 2 h after TPA addition; at this time, the percentage of vimentin-positive cells was highest in G2/M phase. Prolonged TPA treatment induced vimentin accumulation in cells of all cell cycle phases. However, even at later times, the G1-phase population consisted of two subpopulations with low and high vimentin content, respectively. The fraction of cells which displayed a higher level of vimentin probably represents those G1-phase cells which previously had undergone cell division in the presence of TPA. Our data indicate that TPA-induced vimentin synthesis is regulated in a cell cycle-dependent manner and is maximally induced in cells which have passed a putative cell cycle restriction point in G1 phase.  相似文献   

8.
Alkaline phosphatase, long implicated in biomineralization, is a feature of the osteoblast phenotype. Yet in cultured bone cells, only a fraction stain positive histochemically. To determine whether osteoblast enzyme expression reflects cellular heterogeneity with respect to cell cycle distribution or length of time in culture, the activities of alkaline phosphatase, tartrate-resistant and -sensitive acid phosphatases, and non-specific esterases were assayed kinetically and histochemically. In asynchronous subconfluent cultures, less than 15% of the cells stained positive and assayed activity was 0.04 IU/10(6) cells/cm2. After 1 week, the percent of alkaline phosphatase positive-staining cells increased 5-fold, while activity increased 10-fold. Non-specific esterases and tartrate-sensitive acid phosphatase were constitutive throughout time in culture, whereas tartrate-resistant acid phosphatase activity appeared after 2 weeks. Cell cycle analysis of human bone cells revealed a growth fraction of 80%, an S phase of 8.5 h, G2 + 1/2 M of 4 h, and a G1 of 25-30 h. In synchronous cultures induced by a thymidine-aphidicolin protocol, alkaline phosphatase activity dropped precipitously at M phase and returned during G1. A majority of the alkaline phosphatase activity lost from the cell surface at mitosis was recovered in the medium. Tartrate-sensitive acid phosphatase and non-specific esterase levels were relatively stable throughout the cell cycle, while tartrate-resistant acid phosphatase activity was not assayable at the density used in synchronous cultures. From these data, variations in alkaline phosphatase activity appear to reflect the distribution of cells throughout the cell cycle.  相似文献   

9.
10.
11.
Cells of the human erythroleukemic line K562 can be induced by manipulation of culture conditions to arrest within the G1 phase of the cell cycle, and subsequently to enter S phase synchronously after release from G1. Cell cultures subjected to serum deprivation and hydroxyurea (HU) treatment demonstrated less than 5% of the cells to be in S phase. Four hours after release from HU, 63% of the cells were in S phase, as detected by immunofluorescent staining. This protocol offers a method for synchronization of K562 cells at the G1/S border and a technique for detection of S-phase cells without the use of radioisotopes or flow cytometry instrumentation.  相似文献   

12.
The human promyelocytic leukaemia cell line HL-60 can be induced to differentiate towards mature granulocytes by treatment with dibutyryl cyclic adenosine-3',5'-monophosphate (dbcAMP). Differentiation begins within 16-24 h of treatment and is associated with a time- and dose-dependent accumulation of cells in the G0/G1 phase of the cell cycle with a concomitant decrease in the number of cells in the S and G2 + M phases. Using acridine orange staining, we found that the RNA content of the cells also decreased following differentiation. Stathmokinetic analysis of HL-60 cell populations following dbcAMP treatment showed no effect on the total number of cells in the G0/G1 or S phases, or the rate of progression of cells through these cell cycle compartments. In contrast, dbcAMP was found to induce a transient arrest of the cells in the G2 phase. We also found that differentiation induced by dbcAMP did not require progression of the cells through the cell cycle. Cells arrested in either G1/S by hydroxyurea or G2 + M by colcemid eventually expressed markers of mature granulocytes. These results demonstrate that dbcAMP modulates cell cycle progression. However, these cell cycle changes alone are insufficient to induce granulocytic differentiation of HL-60 cells.  相似文献   

13.
We correlated cell cycle progression and vimentin expression at the single cell level by multiparameter flow cytometry in populations of MPC-11 cells enriched in different cell cycle phases by centrifugal elutriation and subsequently treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Synchronized, untreated cultures showed a uniform, synchronous progression through the cell cycle during further cultivation. A 6-h TPA treatment of G1-phase-enriched cultures induced both a partial G1-phase arrest in the same cycle and a moderate fraction of cells to become vimentin positive. However, nearly all cells of the cultures enriched in S- or in G2/M-phase cells could be arrested by TPA treatment at the earliest in the G1 phase of the second cell cycle and displayed higher fractions of positive cells as well as higher average levels of vimentin. After 20 h of treatment, the G1-phase arrest was almost complete. In terms of fractions of vimentin-positive cells as well as of average cellular vimentin content, the differences between the cultures resembled, albeit on a higher level, those between the respective cultures treated with TPA for 6 h. These observations might explain the striking bimodal distribution of individual cellular vimentin content detectable in G1-phase fractions of asynchronous, TPA-treated cultures. The pattern of vimentin mRNA accumulation in synchronized cultures after short-term TPA treatment strongly suggests that the cell cycle-dependent pattern of vimentin expression is caused, at least in part, by different levels of vimentin mRNA accumulated in the cells. Since proteinaceous mediator(s) are obviously involved in TPA-induced vimentin expression in MPC-11 cells, cell cycle-dependent vimentin expression in these cells may be dependent on cell cycle-dependent regulation of the activity and/or concentration of such mediator(s).  相似文献   

14.
Cyclin B1 mRNA expression varies markedly through the cell cycle with its peak in G2/M and lowest level in G1. Cyclin B1 mRNA levels are also transiently reduced in HeLa cells after gamma-irradiation, coincident with the radiation-induced G2 block. In order to understand the mechanisms underlying these variations, we have measured cyclin B1 mRNA stability in HeLa cells during different phases of the cell cycle. The half-life of the mRNA measured after actinomycin D administration is 1.1-1.8 h in both early and late G1, 8 h in S and 13 h in G2/M. We therefore conclude that altered RNA stability is important in modulating cyclin B1 mRNA levels through the HeLa cell cycle. Furthermore, 3 h after irradiation of HeLa cells in S phase with 10 Gy, the half-life of cyclin B1 mRNA is reduced to 5 h; it is further reduced to 2-3 h at 14 h after irradiation. Thus, decreased stability contributes to the reduction in cyclin B1 mRNA following irradiation.  相似文献   

15.
Aggressive tumor developing human TUR myeloid leukemia cells continued cell cycle progression in the presence of the differentiation-inducing phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Similar results were obtained after stable transfection of TUR cells with the pTracer control vector (pTracer TUR cells). In contrast, TUR transfectants containing a constitutively active poly(ADP-ribose) polymerase-1 (PARP-1) gene fragment in antisense orientation within the pTracer vector (asPARP TUR cells) demonstrated increasing cell attachment and differentiation after TPA treatment. Moreover, asPARP TUR cells ceased to divide upon TPA stimulation. Cell cycle analysis revealed a predominant G0/G1 arrest and a partial G2/M arrest in TPA-treated asPARP TUR cells, whereas little if any population was detectable in S phase. Microarray gene expression analysis exhibited a significant down-regulation of cell cycle genes in phorbol ester-stimulated asPARP TUR and markedly elevated levels of differentiation-associated factors in contrast to TPA-incubated wild-type TUR cells. Whereas PARP-1 can associate with the 20S proteasome in leukemia cells, a significant reduction of this proteolytic activity was observed in asPARP TUR cells. Conversely, protein levels of manganese superoxide dismutase and the matrix metalloproteinases MMP-1 and MMP-9 were progressively increased in TPA-treated asPARP TUR cells, respectively. These findings underscore an important function of PARP-1 in human leukemia cells to connect cell cycle progression and control of differentiation.  相似文献   

16.
《Plant science》1986,46(1):53-61
Cell cycle parameters of maize (Zea maysL cv Black Mexican Sweet) suspension cultures and root meristem cells were determined by pulse labelling with [3H]thymidine ([3H]TdR). Total cell cycle time for the suspension cultures was 27 h; 3 h in G1, 14 h in S, 6 h in G2, 2.2 h in prophase, 1 h in metaphase, 0.1 h in anaphase, and 0.7 h in telophase. Cell cycle durations in root meristem cells of Black Mexican Sweet (BMS) corn with and without B chromosomes in vivo were 20.0 h and 18.3h, respectively. Chemical and physical methods were used successfully to accumulate mitoses in the suspension cultures; compared to the untreated control, the mitotic index of the treated cultures was increased from 4 to 23% and the frequency of metaphase cells increased dramatically from 3 to 19%.  相似文献   

17.
18.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

19.
20.
Cell kinetics of chorionic villi (CV) were studied by BrdUrd-incorporation detected by fluorescence-plus-Giemsa and BrdUrd-antibody techniques, and by DNA flow cytometry. Growth characteristics of long-term cultures of CV resembled fibroblasts with a total cell cycle time of 26 h, final S phase of 9 h, penultimate S phase of 16 h and G2/M phase of 3-4 h. Especially useful for a quick routine diagnostic approach, Ultroser RG, a commercially available serum supplement, significantly increased cell proliferation and stabilized cell cycle lengths to a total cell cycle time of 14 h, final S phase of 7 h, penultimate S phase of 6 h and G2/M phase of 4 h. Moreover, mitotic activity steadily increased in cultured CV, when studying six successive subculturings. This reflects adaptation to the culture conditions rather than an inherent response of cultured CV cells of increasing passage numbers. Native villi exposed to BrdUrd immediately after biopsy show lower rates of uptake than do aliquots after overnight incubation. As shown by BrdUrd-pulse labelling studies, more than 7 h are required to overcome the proposed 'biopsy stress'. This correlates with routine diagnostic techniques, in which many more metaphase cells are observed in short-term cultures than in direct preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号