首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of C57BL/6 mice acutely infected with lymphocytic choriomeningitis virus (LCMV) by using intracellular cytokine staining revealed a high frequency (2 to 10%) of CD4(+) T cells secreting the Th1-associated cytokines interleukin-2 (IL-2), gamma interferon (IFN-gamma), and tumor necrosis factor alpha, with no concomitant increase in the frequency of CD4(+) T cells secreting the Th2-associated cytokines IL-4, IL-5, and IL-10 following stimulation with viral peptides. In LCMV-infected C57BL/6 CD8(-/-) mice, more than 20% of the CD4(+) T cells secreted IFN-gamma after viral peptide stimulation, whereas less than 1% of the CD4(+) T cells secreted IL-4 under these same conditions. Mice persistently infected with a high dose of LCMV clone 13 also generated a virtually exclusive Th1 response. Thus, LCMV induces a much more profound virus-specific CD4(+) T-cell response than previously recognized, and it is dramatically skewed to a Th1 phenotype.  相似文献   

2.
Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at approximately 6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.  相似文献   

3.
Following acute lymphocytic choriomeningitis virus (LCMV) infection, there is a potent antiviral CD8 T-cell response that eliminates the infection. This initial CD8 T-cell response is followed by a period of memory during which elevated numbers of virus-specific CD8 T cells remain in the mouse. CD4 T cells are also activated after LCMV infection, but relatively less is known about the magnitude and duration of the CD4 response. In this study, we used intracellular staining for interferon-gamma to measure both CD4 and CD8 responses in the same mice at the single cell level. After LCMV infection, there was an increase in the number of activated CD4 T cells and an associated increase in the number of virus-specific CD4 T cells. At the peak of this expansion phase, the frequency of virus-specific CD4 T cells was 1 in 20 (0.5-1.0 x 10(6) per spleen). Like the CD8 response, long-term CD4 memory could be found up to a year after the infection with frequencies of approximately 1 in 260 (0.5-1.5 x 10(5) per spleen). However, the magnitude of virus-specific CD8 T cells was greater than virus-specific CD4 T cells during all phases of the immune response (expansion, death, and memory). At day 8, there were 20- to 35-fold more virus-specific CD8 T cells than CD4 T cells. This initial difference in cell number lasted into the memory phase as there remained a ten- to 20-fold difference in the CD8 and CD4 responses. These results highlight the importance of the expansion phase in determining the size of the memory T-cell pool. In addition to the difference in the magnitude, the activation requirements of CD8 and CD4 T-cell responses were different: CD8 T responses were not affected by blockade of CD40-CD40 ligand interaction whereas CD4 responses were reduced 90%. So while there is long-term memory in both the CD8 and CD4 compartments, the rules regulating the activation of CD8 and CD4 T cells and the overall magnitude of the responses are different.  相似文献   

4.
Primary and secondary (boosted) memory CD8 T cells exhibit differences in gene expression, phenotype and function. The impact of repeated antigen stimulations on memory CD4 T cells is largely unknown. To address this issue, we utilized LCMV and Listeria monocytogenes infection of mice to characterize primary and secondary antigen (Ag)-specific Th1 CD4 T cell responses. Ag-specific primary memory CD4 T cells display a CD62LloCCR7hi CD27hi CD127hi phenotype and are polyfunctional (most produce IFNγ, TNFα and IL-2). Following homologous prime-boost immunization we observed pathogen-specific differences in the rate of CD62L and CCR7 upregulation on memory CD4 T cells as well as in IL-2+IFNγco-production by secondary effectors. Phenotypic and functional plasticity of memory Th1 cells was observed following heterologous prime-boost immunization, wherein secondary memory CD4 T cells acquired phenotypic and functional characteristics dictated by the boosting agent rather than the primary immunizing agent. Our data also demonstrate that secondary memory Th1 cells accelerated neutralizing Ab formation in response to LCMV infection, suggesting enhanced capacity of this population to provide quality help for antibody production. Collectively these data have important implications for prime-boost vaccination strategies that seek to enhance protective immune responses mediated by Th1 CD4 T cell responses.  相似文献   

5.
For this study, we used DNA-based immunizations to elicit gamma interferon-producing (Tc1) or interleukin 4 (IL-4)-producing (Tc2) CD8 T cells to the influenza virus nucleoprotein. We examined the response of these cells to an intranasal viral challenge. Both the Tc2- and Tc1-biased responses were present in mice with predominantly IL-4-producing (Th2) CD4 T cells. After viral challenge, Tc1 cells underwent more efficient expansion than did Tc2 cells, and only Tc1 cells were detected at the site of infection. In contrast, the CD4 response remained IL-4 biased. However, only a limited number of CD4 cells appeared in the postchallenge lung, and these were strongly enriched for the Th1 phenotype. Thus, the type of memory T-cell response induced by DNA vaccination does not determine the type of response that will predominate at the site of an infection.  相似文献   

6.
The mechanisms of how Th cells promote CD8(+) T cell responses during viral infections are largely unknown. In this study, we unraveled the mechanisms of T cell help for CD8(+) T cell responses during vaccinia virus infection. Our results demonstrate that Th cells promote vaccinia virus-specific CD8(+) T cell responses via two interconnected synergistic pathways: First, CD40L expressed by activated CD4(+) T cells instructs dendritic cells to produce bioactive IL-12p70, which is directly sensed by Ag-specific CD8(+) T cells, resulting in increased IL-2Rα expression. Second, Th cells provide CD8(+) T cells with IL-2, thereby enhancing their survival. Thus, Th cells are at the center of an important communication loop with a central role for IL-2/IL-2R and bioactive IL-12.  相似文献   

7.
The effector function of CD8 T cells is mediated via cell-mediated cytotoxicity and production of cytokines like gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). While the roles of perforin-dependent cytotoxicity, IFN-gamma, and TNF-alpha in controlling acute viral infections are well studied, their relative importance in defense against chronic viral infections is not well understood. Using mice deficient for TNF receptor (TNFR) I and/or II, we show that TNF-TNFR interactions have a dual role in mediating viral clearance and downregulating CD8 and CD4 T-cell responses during a chronic lymphocytic choriomeningitis virus (LCMV) infection. While wild-type (+/+) and TNFR II-deficient (p75(-/-)) mice cleared LCMV from the liver and lung, mice deficient in TNFR I (p55(-/-)) or both TNFR I and TNFR II (double knockout [DKO]) exhibited impaired viral clearance. The inability of p55(-/-) and DKO mice to clear LCMV was not a sequel to either suboptimal activation of virus-specific CD8 or CD4 T cells or impairment in trafficking of LCMV-specific CD8 T cells to the liver and lung. In fact, the expansion of LCMV-specific CD8 and CD4 T cells was significantly higher in DKO mice compared to that in +/+, p55(-/-), and p75(-/-) mice. TNFR deficiency did not preclude the physical deletion of CD8 T cells specific for nucleoprotein 396 to 404 but delayed the contraction of CD8 T-cell responses to the epitopes GP33-41 and GP276-285 in the viral glycoprotein. The antibody response to LCMV was not significantly altered by TNFR deficiency. Taken together, these findings have implications in development of immunotherapy in chronic viral infections of humans.  相似文献   

8.
The acute phase of many viral infections is associated with the induction of a pronounced CD8 T cell response which plays a principle role in clearing the infection. By contrast, certain infections are not as readily controlled. In this study, we have used the well-defined system of lymphocytic choriomeningitis virus (LCMV) infection of mice to determine quantitative and qualitative changes in virus-specific CD8 T cell responses that rapidly resolve acute infections, more slowly control protracted infections, or fail to clear chronic infections. Acute LCMV infection elicits potent, functional, multi-epitope-specific CD8 T cell responses. Virus-specific CD8 T cells also expand, albeit to a lesser extent, during protracted LCMV infection. Under these conditions, there is a progressive diminution in the capacity to produce IL-2, TNF-alpha, and IFN-gamma. Changes in cytotoxic activities are also detectable but differ depending upon the specificity of the responding cells. As the infection is slowly resolved, a resurgence of cytokine production by virus-specific CD8 T cells is observed. CD4-deficient mice cannot control infection with certain strains of LCMV, but do mount multi-epitope-specific CD8 T cell responses that also lose effector capabilities; however, they are not maintained indefinitely in an unresponsive state as these cells become deleted over time. Overall, our findings suggest that constant high viral loads result in the progressive diminution of T cell effector functions and subsequent physical loss of the responding cells, whereas if the viral load is brought under control a partial restoration of CD8 T cell functions can occur.  相似文献   

9.
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated. Based on these findings, we conclude that enhanced GITR-triggering mediates its protective, anti-viral effect on the CD8 T cell compartment by boosting CD4 T cell help. As such, increasing costimulation through GITR may be an attractive strategy to increase anti-viral CTL responses without exacerbating pathology, in particular to persistent viruses such as HIV and HCV.  相似文献   

10.
The stages of development of human antigen-specific CD4+ T cells responding to viral infection and their differentiation into long-term memory cells are not well understood. The inoculation of healthy adults with vaccinia virus presents an opportunity to study these events intensively. Between days 11 and 14 postinoculation, there was a peak of proliferating CCR5+CD38+++ CD4+ effector cells which contained the cytotoxic granule marker T-cell intracellular antigen 1 and included gamma interferon (IFN-gamma)-producing vaccinia virus-specific CD4+ T cells. The majority of these initial vaccinia virus-specific CD4+ T cells were CD127+ and produced interleukin-2 (IL-2) but not CTLA-4 in response to restimulation in vitro. Between days 14 and 21, there was a switch from IFN-gamma and IL-2 coexpression to IL-2 production only, coinciding with a resting phenotype and an increased in vitro proliferation response. The early CCR5+CD38+++ vaccinia virus-specific CD4+ T cells were similar to our previous observations of human immunodeficiency virus (HIV)-specific CD4+ T cells in primary HIV type 1 (HIV-1) infection, but the vaccinia virus-specific cells expressed much more CD127 and IL-2 than we previously found in their HIV-specific counterparts. The current study provides important information on the differentiation of IL-2+ vaccinia virus-specific memory cells, allowing further study of antiviral effector CD4+ T cells in healthy adults and their dysfunction in HIV-1 infection.  相似文献   

11.
Cytotoxic CD8+ T cells are essential for the control of viral liver infections, such as those caused by HBV or HCV. It is not entirely clear whether CD4+ T-cell help is necessary for establishing anti-viral CD8+ T cell responses that successfully control liver infection. To address the role of CD4+ T cells in acute viral hepatitis, we infected mice with Lymphocytic Choriomeningitis Virus (LCMV) of the strain WE; LCMV-WE causes acute hepatitis in mice and is cleared from the liver by CD8+ T cells within about two weeks. The role of CD4+ T-cell help was studied in CD4+ T cell-lymphopenic mice, which were either induced by genetic deficiency of the major histocompatibility (MHC) class II transactivator (CIITA) in CIITA−/− mice, or by antibody-mediated CD4+ cell depletion. We found that CD4+ T cell-lymphopenic mice developed protracted viral liver infection, which seemed to be a consequence of reduced virus-specific CD8+ T-cell numbers in the liver. Moreover, the anti-viral effector functions of the liver-infiltrating CD8+ T cells in response to stimulation with LCMV peptide, notably the IFN-γ production and degranulation capacity were impaired in CIITA−/− mice. The impaired CD8+ T-cell function in CIITA−/− mice was not associated with increased expression of the exhaustion marker PD-1. Our findings indicate that CD4+ T-cell help is required to establish an effective antiviral CD8+ T-cell response in the liver during acute viral infection. Insufficient virus control and protracted viral hepatitis may be consequences of impaired initial CD4+ T-cell help.  相似文献   

12.
CD4(+) Th1 responses to virus infections are often necessary for the development and maintenance of virus-specific CD8(+) T-cell responses. However, in the present study with Friend murine retrovirus (FV), the reverse was also found to be true. In the absence of a responder H-2(b) allele at major histocompatibility complex (MHC) class II loci, a single H-2D(b) MHC class I allele was sufficient for the development of a CD4(+) Th1 response to FV. This effect of H-2D(b) on CD4(+) T-cell responses was dependent on CD8(+) T cells, as demonstrated by depletion studies. A direct effect of CD8(+) T-cell help in the development of CD4(+) Th1 responses to FV was also shown in vaccine studies. Vaccination of nonresponder H-2(a/a) mice induced FV-specific responses of H-2D(d)-restricted CD8(+) cytotoxic T lymphocytes (CTL). Adoptive transfer of vaccine-primed CD8(+) T cells to naive H-2(a/a) mice prior to infection resulted in the generation of FV-specific CD4(+) Th1 responses. This novel helper effect of CD8(+) T cells could be an important mechanism in the development of CD4(+) Th1 responses following vaccinations that induce CD8(+) CTL responses. The ability of MHC class I genes to facilitate CD4(+) Th1 development could also be considerable evolutionary advantage by allowing a wider variety of MHC genotypes to generate protective immune responses against intracellular pathogens.  相似文献   

13.
Infection of mice with a series of heterologous viruses causes a reduction of memory CD8(+) T cells specific to viruses from earlier infections, but the fate of the virus-specific memory CD4(+) T cell pool following multiple virus infections has been unknown. We have previously reported that the virus-specific CD4(+) Th precursor (Thp) frequency remains stable into long-term immunity following lymphocytic choriomeningitis virus (LCMV) infection. In this study, we questioned whether heterologous virus infections or injection with soluble protein CD4 Ags would impact this stable LCMV-specific CD4(+) Thp memory pool. Limiting dilution analyses for IL-2-producing cells and intracellular cytokine staining for IFN-gamma revealed that the LCMV-specific CD4(+) Thp frequency remains relatively stable following multiple heterologous virus infections or protein Ag immunizations, even under conditions that dramatically reduce the LCMV-specific CD8(+) CTL precursor frequency. These data indicate that the CD4(+) and CD8(+) memory T cell pools are regulated independently and that the loss in CD8(+) T cell memory following heterologous virus infections is not a consequence of a parallel loss in the memory CD4(+) T cell population.  相似文献   

14.
This study documents a striking dichotomy between CD4 and CD8 T cells in terms of their requirements for CD40-CD40 ligand (CD40L) costimulation. CD40L-deficient (-/-) mice made potent virus-specific CD8 T cell responses to dominant as well as subdominant epitopes following infection with lymphocytic choriomeningitis virus. In contrast, in the very same mice, virus-specific CD4 T cell responses were severely compromised. There were 10-fold fewer virus-specific CD4 T cells in CD40L-/- mice compared with those in CD40L+/+ mice, and this inhibition was seen for both Th1 (IFN-gamma, IL-2) and Th2 (IL-4) responses. An in vivo functional consequence of this Th cell defect was the inability of CD40L-/- mice to control a chronic lymphocytic choriomeningitis virus infection. This study highlights the importance of CD40-CD40L interactions in generating virus-specific CD4 T cell responses and in resolving chronic viral infection.  相似文献   

15.
Myeloid differentiation factor 88 (MyD88) is an essential adaptor protein in the Toll-like receptor-mediated innate signaling pathway, as well as in interleukin-1 receptor (IL-1R) and IL-18R signaling. The importance of MyD88 in the regulation of innate immunity to microbial pathogens has been well demonstrated. However, its role in regulating acquired immunity to viral pathogens and neuropathogenesis is not entirely clear. In the present study, we examine the role of MyD88 in the CD4+ T-cell response following lymphocytic choriomeningitis virus (LCMV) infection. We demonstrate that wild-type (WT) mice developed a CD4+ T-cell-mediated wasting disease after intracranial infection with LCMV. In contrast, MyD88 knockout (KO) mice did not develop wasting disease in response to the same infection. This effect was not the result of MyD88 regulation of IL-1 or IL-18 responses since IL-1R1 KO and IL-18R KO mice were not protected from weight loss. In the absence of MyD88, naïve CD4+ T cells failed to differentiate to LCMV-specific CD4 T cells. We demonstrated that MyD88 KO antigen-presenting cells are capable of activating WT CD4+ T cells. Importantly, when MyD88 KO CD4+ T cells were reconstituted with an MyD88-expressing lentivirus, the rescued CD4+ T cells were able to respond to LCMV infection and support IgG2a antibody production. Overall, these studies reveal a previously unknown role of MyD88-dependent signaling in CD4+ T cells in the regulation of the virus-specific CD4+ T-cell response and in viral infection-induced immunopathology in the central nervous system.  相似文献   

16.
Experiments designed to distinguish virus-specific from non-virus-specific T cells showed that bystander T cells underwent apoptosis and substantial attrition in the wake of a strong T-cell response. Memory CD8 T cells (CD8(+) CD44(hi)) were most affected. During acute viral infection, transgenic T cells that were clearly defined as non-virus specific decreased in number and showed an increase in apoptosis. Also, use of lymphocytic choriomeningitis virus (LCMV) carrier mice, which lack LCMV-specific T cells, showed a significant decline in non-virus-specific memory CD8 T cells that correlated to an increase in apoptosis in response to the proliferation of adoptively transferred virus-specific T cells. Attrition of T cells early during infection correlated with the alpha/beta interferon (IFN-alpha/beta) peak, and the IFN inducer poly(I:C) caused apoptosis and attrition of CD8(+) CD44(hi) T cells in normal mice but not in IFN-alpha/beta receptor-deficient mice. Apoptotic attrition of bystander T cells may make room for the antigen-specific expansion of T cells during infection and may, in part, account for the loss of T-cell memory that occurs when the host undergoes subsequent infections.  相似文献   

17.
Viral infections which induce strong T-cell responses are often characterized by a period of transient immunodeficiency associated with the failure of host T cells to proliferate in response to mitogens or to mount memory recall responses to other antigens. During acute infections, most of the activated, proliferating virus-specific T cells are sensitized to undergo apoptosis on strong T-cell receptor (TCR) stimulation, but it has not been known why memory T cells not specific for the virus fail to proliferate on exposure to their cognate antigen. Using a lymphocytic choriomeningitis virus (LCMV) infection model in which LCMV-immune Thy 1.1(+) splenocytes are adoptively transferred into Thy 1.2(+) LCMV carrier mice, we demonstrate here that T cells clearly defined as not specific for the virus are sensitized to undergo activation-induced cell death on TCR stimulation in vitro. This bystander sensitization was in part dependent on the expression of Fas ligand (FasL) on the activated virus-specific cells and gamma interferon (IFN-gamma) receptor expression on the bystander T cells. We propose that FasL from highly activated antiviral T cells may sensitize IFN-gamma-conditioned T cells not specific for the virus to undergo apoptosis rather than to proliferate on encountering antigen. This may in part explain the failure of memory T cells to respond to recall antigens during acute and persistent viral infections.  相似文献   

18.
Ag-specific Th1 and Th2 cytokine-producing CD4 T cells were quantitated in secondary lymphoid and tertiary tissues following oral Listeria monocytogenes infection. Although the response to Listeria was previously believed to be predominantly Th1 like, CD4 T cells producing IL-4 or IL-5 comprised a substantial proportion of the overall primary and memory response. The frequency of IFN-gamma-, IL-4-, or IL-5-producing primary effector or memory CD4 T cells was significantly higher in lung, liver, and intestinal lamina propria (LP) as compared with spleen and lymph node. However, maximum numbers of IL-4- and IL-5-producing cells were detected in the LP several days after the peak of the Th1 response, and IL-5 production was skewed toward the mucosal tissues. Remarkably, the recall response resulted in sustained Th1 and Th2 responses in tertiary, but not lymphoid tissues and long-term retention of Th1 and Th2 memory cells in equal proportions in the LP. Finally, CD40 ligand was essential for induction of IFN-gamma in the spleen and LP, but not in the liver and lung, while the IL-4 response required CD40 ligand only in the spleen. Therefore, the rules governing the effector phenotype, and the overall magnitude of the CD4 response, are regulated at the level of individual tissues.  相似文献   

19.
Under conditions of high antigenic load during infection with invasive lymphocytic choriomeningitis virus (LCMV) strains, virus can persist by selective clonal exhaustion of antigen-specific CD8(+) T cells. In this work we studied the down-regulation of the virus-specific CD8(+)-T-cell response during a persistent infection of adult mice, with particular emphasis on the contribution of the interferon response in promoting host defense. Studies were conducted by infecting mice deficient in receptors for type I (alpha/beta interferon [IFN-alpha/beta]), type II (IFN-gamma), and both type I and II IFNs with LCMV isolates that vary in their capacity to induce T-cell exhaustion. The main conclusions of this study are as follows. (i) IFNs play a critical role in LCMV infection by reducing viral loads in the initial stages of infection and thus modifying both the extent of CD8(+)-T-cell exhaustion and the course of infection. The importance of IFNs in this context varies with the biological properties of the LCMV strain. (ii) An inverse correlation exists between antigen persistence and responsiveness of virus-specific CD8(+) T cells. This results in distinct programs of activation or tolerance (functional unresponsiveness and/or physical elimination of antigen-specific cells) during acute and chronic virus infections, respectively. (iii) A successful immune response associated with definitive viral clearance requires an appropriate balance between cellular and humoral components of the immune system. We discuss the role of IFNs in influencing virus-specific T cells that determine the outcome of persistent infections.  相似文献   

20.
The kinetics of CD8 T cell IFN-gamma responses as they occur in situ are defined here during lymphocytic choriomeningitis virus (LCMV) infections, and a unique mechanism for the innate cytokines IFN-alphabeta and IL-18 in promoting these responses is defined. Infections of mice with Armstrong or WE strains of LCMV induced an unexpectedly early day 4 IFN-gamma response detectable in serum samples and spleen and liver homogenates. Production of IFN-gamma was MHC class I/CD8 dependent, but did not require IL-12, NK cells, TCR-gammadelta T cells, MHC class II, or CD4 T cells. Peak response required specific Ag recognition, as administration of antagonist peptide partially impaired day 4 IFN-gamma induction, and viral peptide stimulation enhanced CD8 T cell IFN-gamma expression in culture. The IFN-gamma response was associated with IL-18 and IFN-alphabeta expression. Furthermore, both factors augmented peptide-driven IFN-gamma production in culture, and mice lacking IL-18 or IFN-alphabeta functions had reduced day 4 IFN-gamma. Collectively, these results demonstrate that during viral infections, there is a dramatic in vivo CD8 T cell response preceding maximal expansion of these cells, and that the mechanism supporting this response is dependent on endogenous innate cytokines. Because stimulation by microbial products is linked to innate cytokine expression, the studies also suggest a pathway for precisely limiting T cell functions to times of need.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号