首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Newly hatched precocial chicks of arctic shorebirds are able to walk and regulate their body temperatures to a limited extent. Yet, they must also grow rapidly to achieve independence before the end of the short arctic growing season. A rapid growth rate may conflict with development of mature function, and because of the allometric scaling of thermal relationships, this trade-off might be resolved differently in large and small species. We assessed growth (mass) and functional maturity (catabolic enzyme activity) in leg and pectoral muscles of chicks aged 1-16 d and adults of two scolopacid shorebirds, the smaller dunlin (Calidris alpina: neonate mass 8 g, adult mass 50 g) and larger whimbrel (Numenius phaeopus; neonate mass 34 g, adult mass 380 g). Enzyme activity indicates maximum catabolic capacity, which is one aspect of the development of functional maturity of muscle. The growth rate-maturity hypothesis predicts that the development of catabolic capacity should be delayed in faster-growing muscle masses. Leg muscles of both species were a larger proportion of adult size at hatching and grew faster than pectoral muscles. Pectoral muscles grew more rapidly in the dunlin than in the whimbrel, whereas leg muscles grew more rapidly in the whimbrel. In both species and in both leg and pectoral muscles, enzyme activities generally increased with age, suggesting increasing functional maturity. Levels of citrate synthase activity were similar to those reported for other species, but l-3-hydroxyacyl-CoA-dehydrogenase and pyruvate kinase (PK) activities were comparatively high. Catabolic capacities of leg muscles were initially high compared to those of pectoral muscles, but with the exception of glycolytic (PK) capacities, these subsequently increased only modestly or even decreased as chicks grew. The earlier functional maturity of the more rapidly growing leg muscles, as well as the generally higher functional maturity in muscles of the more rapidly growing dunlin chicks, contradicts the growth rate-maturity function trade-off and suggests that birds have considerable latitude to modify this relationship. Whimbrel chicks, apparently, can rely on allometric scaling of power requirements for locomotion and the thermal inertia of their larger mass to reduce demands on their muscles, whereas dunlin chicks require muscles with higher metabolic capacity from an earlier age. Thus, larger and smaller species may adopt different strategies of growth and tissue maturation.  相似文献   

2.
Myoglobin concentration and myosin ATPase activity were measured in the pectoral muscle of wild spruce grouse (Dendragapus canadensis) and ruffed grouse (Bonasa umbellus), together with the weight of the Mm. pectoralis, supracoracoideus and heart. mATPase activities were similar in both species, but spruce grouse contained 15 times more myoglobin in the pectoralis muscle and the heart was three times heavier than that of the ruffed grouse. The relative mass of the flight muscles and wing loading were similar between species. Characteristics of the pectoral muscle of both grouse species reflect adaptations to predation and advertising displays. The glycolytic nature of the ruffed grouse pectoral muscle and small heart size is an adaptation to a sedentary existence within a small home range. The more oxidative pectoral muscle of spruce grouse together with its larger heart are adaptations to seasonal dispersals requiring more sustained flight.  相似文献   

3.
Gareth  Jones 《Journal of Zoology》1987,213(2):263-279
The body condition of adult sand martins during the breeding season and a sample of fledglings was investigated by carcass analysis and by examination of live birds in the field. Fat scoring of live individuals was a reliable predictor of an individual's lipid content in most instances. Body mass changes during breeding were related to changes in the size of birds' lipid reserves, pectoral muscle mass, body water, and to development of the reproductive system. In both males and females, reserve lipid declined between the onset of breeding and nestling rearing. Pre-breeding males had significantly greater pectoral muscle masses than did nestling rearing females. The potential significance of protein in pectoral muscles as an energy reserve during breeding was small compared with lipid reserves. By comparing potential energy reserves in body lipid and protein with daily energy expenditure, it was calculated that neither incubating nor nestling rearing adults could survive a day of normal activity without feeding. The selective premium on adults optimizing their use of time and energy for self-maintenance behaviour during breeding is therefore likely to be great.  相似文献   

4.
Vidar  Marcström Robert  Kenward 《Ibis》1981,123(3):311-327
Winglength was the most powerful intersex discriminator, giving 99.5% separation by itself and 100% combined with bodyweight or keel length. Females but not males, had longer wings and were heavier as adults than as juveniles. Pectoral fat and muscle indices explained 81–91% of variation in total fat and 93–96% of variation in total lean dry weight for male and female hawks but bodyweight change explained only 56–60% of variation in the fat index compared with 75–76% for pectoral lean dry weight. The best size index, keel length, explained only 6.4% of bodyweight variation in males and 11.2% in females. Winglength was very weakly correlated with keel length. Taking size difference into account, females were heavier with higher wingloading than males but had relatively lighter flight muscles and therefore a lower power availability relative to their flight requirements than in males. On the other hand, females had greater maximum fat stores (17% of bodyweight) than males (14%) and could have survived longer than males without food. These differences would be adaptive for the different role of each sex during breeding. The weight of first capture of live-trapped adults and juveniles increased between September and December, possibly because moulting (in adults) or hunting inexperience (in juveniles) kept weights low in autumn but also perhaps because the benefit of having large reserves for surviving, relative to the cost of decreased agility in flight because of increased wingloading, was greatest in mid-winter. Shot hawks weighed more than the live-trapped birds but showed the same trends, as did retrapped individuals. Females but not males, tended to lose weight in January before a further increase in the spring. Records of hawks retaken more than two months after first capture showed that between October and January survival in females but not males, was enhanced by high bodyweight. Since female weights were also significantly lower in southern Sweden than in central and northern areas, it is suggested that changing agriculture or other factors in the south may have reduced prey for females more than for males.  相似文献   

5.
The cartilaginous fish Chimaera monstrosa swims slowly by means of pectoral fin movements, and fast by undulations of the tail. In order to compare the fibres in the corresponding muscles, they were studied by histochemistry and electron microscopy. Three fibre types were identified by microphotometry and morphometry. Most of the axial muscles are white fibres, containing little mitochondria and glycogen. Red fibres, with glycogen and about 5 % mitochondria constitute a thin sheet in the axial muscles, composed of one fibre layer only. Pink fibres, with intermediate amounts of glycogen and mitochondria are situated between these two types, but are often not covered by red fibres. Pectoral muscles contain numerous red and intermediate fibres, partially mixed, superficially, and white fibres deeper. Pectoral muscle red fibres contain about 25 % mitochondria, half of which are situated in subsarcolemmal accummulations. The sarcotubular system has T-tubules at the Z discs, and the terminal cisternae are partially divided by regularly spaced clefts.  相似文献   

6.
The Alpine swift (Apus melba) forages on insects caught exclusively on the wing, implying that dependent nestlings face acute food shortage in periods of cold and rainy weather. Therefore, there should be strong selection on nestling swifts to evolve physiological strategies to cope with periods of undernutrition. We have investigated intra-individual changes in nestling pectoral muscle and body temperature in response to a 1-week period of inclement weather. The pectoral muscle is the largest reserves of proteins, and nestlings have to devote a large amount of energy in the maintenance of body temperature. The results show that nestling pectoral muscle size and body temperature were significantly reduced during the episode of inclement weather. Assuming that these physiological changes are adaptive, our study suggests that nestling swifts spare energy by a pronounced reduction (up to 18°C) in body temperature and use proteins from the pectoral muscle as a source of extra energy to survive prolonged periods of fasting.  相似文献   

7.
The “cost‐benefit” hypothesis states that avian body organs show mass changes consistent with the trade‐off between their functional importance and maintenance cost, which may vary throughout the annual cycle. Flightless moulting common scoter Melanitta nigra in Danish marine waters select rich undisturbed offshore feeding areas lacking predators, suggesting active feeding during moult. We tested four predictions relating to organ size during flightlessness in moulting male common scoter under this hypothesis. Namely that (i) pectoral muscles would show atrophy followed by hypertrophy, but that there would be no change in (ii) leg muscles and heart (the locomotory architecture required to sustain diving for food), (iii) digestive organs and liver (required to process food), or (iv) fat deposits (because birds could fulfil daily energy requirements from locally abundant food resources). Dissection of scoters collected at different stages during wing moult south of the Danish island of Læsø provided data on organ size that were consistent with these predictions. Pectoral muscle mass showed a c.23% atrophy during the middle of the flightless period relative to that at the end of moult. There was no significant loss in leg muscle, heart, digestive organs (except gizzard mass), liver, fat reserves or body mass with remigial growth. These findings are consistent with the hypothesis that common scoter moult in a rich feeding area, and rely on their diet to meet the nutritional requirements of remigial moult. These results differ in detail from those of a similar study of terrestrial feeding moulting greylag geese Anser anser, but because of the widely differing ecology of the species concerned, both sets of findings provide strong support for the hypothesis that variations in phenotypic plasticity in size of fat stores, locomotor and digestive organs can be interpreted as evolutionary adaptations to meet the conflicting needs (feather growth, nutritional challenges and predator avoidance) of the flightless moult period in different Anatidae species.  相似文献   

8.
Aquatic propulsion generated by the pectoral fins occurs in many groups of perciform fishes, including numerous coral reef families. This study presents a detailed survey of pectoral fin musculoskeletal structure in fishes that use labriform propulsion as the primary mode of swimming over a wide range of speeds. Pectoral fin morphological diversity was surveyed in 12 species that are primarily pectoral swimmers, including members of all labroid families (Labridae, Scaridae, Cichlidae, Pomacentridae, and Embiotocidae) and five additional coral reef fish families. The anatomy of the pectoral fin musculature is described, including muscle origins, insertions, tendons, and muscle masses. Skeletal structures are also described, including fin shape, fin ray morphology, and the structure of the radials and pectoral girdle. Three novel muscle subdivisions, including subdivisions of the abductor superficialis, abductor profundus, and adductor medialis were discovered and are described here. Specific functional roles in fin control are proposed for each of the novel muscle subdivisions. Pectoral muscle masses show broad variation among species, particularly in the adductor profundus, abductor profundus, arrector dorsalis, and abductor superficialis. A previously undescribed system of intraradial ligaments was also discovered in all taxa studied. The morphology of these ligaments and functional ramifications of variation in this connective tissue system are described. Musculoskeletal patterns are interpreted in light of recent analyses of fin behavior and motor control during labriform swimming. Labriform propulsion has apparently evolved independently multiple times in coral reef fishes, providing an excellent system in which to study the evolution of pectoral fin propulsion.  相似文献   

9.
Juvenile songbirds on spring migration travel from tropical wintering sites to temperate breeding destinations thousands of kilometres away with no prior experience to guide them. We provide a first glimpse at the migration timing, routes, and stopover behaviour of juvenile wood thrushes (Hylocichla mustelina) on their inaugural spring migration by using miniaturized archival geolocators to track them from Central America to the U.S. and Canada. We found significant differences between the timing of juvenile migration and that of more experienced adults: juveniles not only departed later from tropical wintering sites relative to adults, they also became progressively later as they moved northward. The increasing delay was driven by more frequent short stops by juveniles along their migration route, particularly in the U.S. as they got closer to breeding sites. Surprisingly, juveniles were just as likely as adults to cross the Gulf of Mexico, an open-water crossing of 800–1000 km, and migration route at the Gulf was not significantly different for juveniles relative to adults. To determine if the later departure of juveniles was related to poor body condition in winter relative to adults, we examined percent lean body mass, fat scores, and pectoral muscle scores of juvenile versus adult birds at a wintering site in Belize. We found no age-related differences in body condition. Later migration timing of juveniles relative to adults could be an adaptive strategy (as opposed to condition-dependent) to avoid the high costs of fast migration and competition for breeding territories with experienced and larger adults. We did find significant differences in wing size between adults and juveniles, which could contribute to lower flight efficiency of juveniles and thus slower overall migration speed. We provide the first step toward understanding the “black box” of juvenile songbird migration by documenting their migration timing and en route performance.  相似文献   

10.
To cope with changes in the environment, organisms not only show behavioural but also phenotypic adjustments. This is well established for the digestive tract. Here we present a first case of birds adjusting their flight machinery in response to predation risk. In an indoor experiment, ruddy turnstones Arenaria interpres were subjected to an unpredictable daily appearance of either a raptor or a small gull (as a control). Ruddy turnstones experiencing threat induced by a flying raptor model, longer than after similar passage by the gull model, refrained from feeding after this disturbance. Pectoral muscle mass, but not lean mass, responded in a course of a few days to changes in the perceived threat of predation. Pectoral muscle mass increased after raptor scares. Taking the small increases in body mass into account, pectoral muscle mass was 3.6% higher than aerodynamically predicted for constant flight performance. This demonstrates that perceived risk factors may directly affect organ size.  相似文献   

11.
Disuse can induce numerous adaptive alterations in skeletal muscle. In the present study the effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450 g) and juvenile (200 g) rats after 1, 7, or 14 days of whole body suspension. Quantitatively and qualitatively the soleus (S), gastrocnemius (G), plantaris (P), and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicated a less rapid rate of response in adult muscles. This was corroborated by assessment of muscle alpha-actin mRNA levels, which indicated a rapid (within 1 day) and significant (P less than 0.05) effect in juveniles but not in adults. The results of this investigation indicate 1) a qualitatively similar differential effect of unloading on muscles of adults and juveniles, 2) a quantitatively reduced and less rapid effect of suspension on adult muscles, and 3) a close similarity of adult and juvenile muscle responses during suspension and spaceflight, suggesting that this ground-based model simulates many of the unloading effects of weightlessness.  相似文献   

12.
Fluorescence microscopy was used to study the behavior of perisynaptic Schwann cells (PSCs) in relation to motor nerve terminals and postsynaptic clusters of acetylcholine receptors, during the development of the neuromuscular junction (NMJ) in the frog Xenopus laevis. Pectoral (supracoracoideus) muscles were labeled with monoclonal antibody 2A12 for Schwann cells, the dye FM4-64 for nerve terminals (NTs), alpha-bungarotoxin for acetylcholine receptors (AChRs), and Hoechst 33258 for cellular nuclei, in animals from tadpole stage 57 to fully grown adults. When muscle fibers first appeared in stage 57, NMJs consisted of tightly apposed NTs and AChRs and were only partially covered with PSCs or their processes. Within a few stages, PSCs fully occupied and overgrew the NMJs, extending fine sprouts between a few micrometers and hundreds of micrometers beyond the borders of the junction. Sprouts of PSCs were most abundant during the time when secondary myogenesis, synaptogenesis, and synaptic growth occurred at their highest rates. PSCs were recruited to NMJs during synaptic growth, at rates between 1.3 PSCs/100 microm junctional length early on and 0.4 PSCs/100 microm later. Shortly after metamorphosis, PSC sprouts disappeared and NMJs acquired the adult appearance, in which PSCs, NTs, and AChRs were mostly congruent. The results suggest that, although PSCs may not be required for initial nerve-muscle contacts, PSCs sprouts lead synaptic growth and play a role in the extension and maturation of developing NMJs.  相似文献   

13.
As part of an effort on scaling of pectoral spines and muscles, the basis for growth was examined in six pectoral muscles in juvenile blue catfish Ictalurus furcatus, the largest catfish in North America. Fibre number increases slowly in fish from 13·0 to 26·4 cm in total length, doubles by 27·0 cm and remains stable in larger individuals. Simultaneously, mean fibre diameter decreases by half, caused by the addition of new small fibres, before increasing non‐linearly in larger fish. The orders of magnitude disparity between the size at hatching and the size of large adults may have selected for rapid muscle fibre addition at a threshold size.  相似文献   

14.
Pectoral muscle can be an important source of protein for birds. During egg formation Zebra Finches Taeniopygia guttata are able to compensate for nutritional inadequacies in their diet by utilization of the protein in their flight muscles. This analysis of flight muscle sarcoplasm supported earlier observations of protein depletion during egg production. However, SDS gel electrophoresis of the sarcoplasm produced no evidence to support a previous suggestion of the existence of a high molecular weight storage protein, and it is thought that the original observation may have arisen as an artefact of experimental methodology. During laying, protein removal from the sarcoplasm occurred over a range of different proteins and was not confined to any one specific protein band. Additionally, the protein band most reduced over the course of laying did not contain elevated levels of the amino acids most limiting to egg production. These results indicate that during laying, flight muscle sarcoplasm contributes towards the nutrient requirements of egg production from general protein reserves, rather than from a specific storage protein containing elevated levels of limiting amino acids.  相似文献   

15.

Phenotypic flexibility in avian metabolic rates and body composition have been well-studied in high-latitude species, which typically increase basal metabolic rate (BMR) and summit metabolism (Msum) when acclimatized to winter conditions. Patterns of seasonal metabolic acclimatization are more variable in lower-latitude birds that experience milder winters, with fewer studies investigating adjustments in avian organ and muscle masses in the context of metabolic flexibility in these regions. We quantified seasonal variation (summer vs winter) in the masses of organs and muscles frequently associated with changes in BMR (gizzard, intestines and liver) and Msum (heart and pectoral muscles), in white-browed sparrow-weavers (Plocepasser mahali). We also measured pectoral muscle thickness using a portable ultrasound system to determine whether we could non-lethally estimate muscle size. A concurrent study measured seasonal changes in BMR and Msum in the same population of sparrow-weavers, but different individuals. There was no seasonal variation in the dry masses of the gizzard, intestines or liver of sparrow-weavers, and during the same period, BMR did not vary seasonally. We found significantly higher heart (~ 18% higher) and pectoral muscle (~ 9% higher) dry mass during winter, although ultrasound measurements did not detect seasonal changes in pectoral muscle size. Despite winter increases in pectoral muscle mass, Msum was ~ 26% lower in winter compared to summer. To the best of our knowledge, this is the first study to report an increase in avian pectoral muscle mass but a concomitant decrease in thermogenic capacity.

  相似文献   

16.
Integrative studies are lacking on the responses of digestive enzymes and energy reserves in conjunction with morphological traits at distinct postprandial times in marine estuarine-dependent flatfishes of ecological and economic importance, such as Paralichthys orbignyanus. We determined total weight (TW), hepato-somatic index (IH), activities of digestive enzymes in the intestine, and the concentration of energy reserves in the liver and the muscle at 0, 24, 72, and 360 h after feeding in juveniles of P. orbignyanus. Amylase activity decreased at 72 h (about 30%). Maltase, sucrose, and lipase activities reached peak at 24 h (67%, 600%, and 35%, respectively). Trypsin and aminopeptidase-N activities at 24 and 72 h, respectively, were lower than those at t = 0 (53% and 30%). A peak increase in the concentration of glycogen and triglycerides in the liver (24 h) (86% and 89%, respectively) occurred. In muscle, glycogen and triglyceride concentrations were unchanged at 24 h and higher at 72 and 360 h (100% and 60%). No changes were found in TW, IH, free glucose in the liver and muscle, and protein in the liver. The protein concentration in the muscle sharply increased at 24 and 360 h after feeding (60%). The results indicate a distinct and specific response of central components of carbohydrate, lipid, and protein metabolism that could be adjustments at the biochemical level upon periods of irregular feeding and even of long-term food deprivation inside coastal lagoons or estuaries. The distinct responses of digestive enzymes in the intestine and energy reserves in the liver and muscle suggest the differential modulation of tissue-specific anabolic and catabolic pathways that would allow the maintenance of physical conditions.  相似文献   

17.
The eared grebe Podiceps nigricollis shows seasonal variation in the relative size of the major flight muscles that lift and lower the wing: respectively, supracoracoideus (s) and pectoralis (p). S/p ratios are low (≈0.07–0.12) when grebes are in flying condition, higher (≈0.11–0.15) when staging and flightless, and extreme (to 0.29) when starving. Shifts were driven by changes in the protein content in the pectoralis; intramuscular fat had little effect. S/p ratios also vary seasonally in the red knot Calidris canutus and are higher in birds newly arrived in breeding areas than at other times. If that increase was an adaptive response to promote wing‐lifting in association with various breeding behaviors as suggested, one would expect it to result from an absolute increase in the post‐arrival size of the supracoracoideus, which was not observed. Instead, we propose that it is unrelated to enhancing the upstroke but results from a decrease in the size of the pectoralis, which is a consequence of the greater rate at which this muscle is catabolized in times of exertion and stress, as at the end of a long migration or during starvation. Fuller data on the size, morphology and physiology of individual muscles at various stages of the annual cycle and migration will help to clarify how ratio changes are achieved, and evaluate potential adaptive significance.  相似文献   

18.
Intraspecific variability in body oxygen reserves, muscle buffering capacity, diving metabolic rate, and diving behavior were examined in recently captured juvenile and adult muskrats. Allometric scaling exponents for lung (b=1.04), blood (b=0.91), and total body oxygen storage capacity (b=1.09) did not differ from unity. The concentration of skeletal muscle myoglobin scaled positively with mass in 254-600-g juveniles (b=1.63) but was mass-independent in larger individuals. Scaling exponents for diving metabolic rate and calculated aerobic dive limit (ADL) were 0.74 and 0.37, respectively. Contrary to allometric predictions, we found no evidence that the diving abilities of muskrats increased with age or body size. Juveniles aged 1-2 mo exhibited similar dive times but dove more frequently than summer-caught adults. Average and cumulative dive times and dive&rcolon;surface ratios were highest for fall- and winter-caught muskrats. Total body oxygen reserves were greatest in winter, mainly due to an increase in blood oxygen storage capacity. The buffering capacity of the hind limb swimming muscles also was highest in winter-caught animals. Several behavioral indicators of dive performance, including average and maximum duration of voluntary dives, varied positively with blood hemoglobin and muscle myoglobin concentration of muskrats. However, none of the behavioral measures were strongly correlated with the total body oxygen reserves or ADLs derived for these same individuals.  相似文献   

19.
The adaptive value of size changes in different organ and muscle groups was studied in red knots (Calidris canutus islandica) in relation to their migration. Birds were sampled on five occasions: at arrival in Iceland in May 1994, two times during subsequent refueling, at departure toward, and on return from, the high arctic breeding grounds. During their 24-d stopover in May, body mass increased from 144.3 to 214.5 g. Mass gains were lowest over the first week (0.85 g/d, only fat-free tissue deposited). Over the subsequent 10 d, average mass increased by 5.0 g/d (fat contributing 78%), and over the last week before takeoff, it increased by 2.0 g/d (fat contributing over 100% because of loss of lean components). There were no sex differences in body and fat mass gains. Over the first interval, lean masses of heart, stomach, and liver increased. During the middle 10 d, sizes of leg muscle, intestine, liver, and kidneys increased. Stomach mass decreased over the same interval. In the last interval before takeoff, the stomach atrophied further and the intestine, leg muscles, and liver became smaller too, but pectoral muscles and heart increased in size. Sizes of "exercise organs" such as pectoral muscle and heart were best correlated with body mass, whereas sizes of organs used during foraging (leg muscles) and nutrient extraction (intestine, liver) were best correlated with rate of mass gain. Kidneys changed little before takeoff, which suggests that they are needed as much during flight as during refueling.  相似文献   

20.
The morphological corollaries of flightlessness of the kakapo (Strigops habroptilus) have been studied using skin specimens, skeletons, and pectoral dissection of an anatomical specimen. These have been compared with the closely related, flighted kea (Nestor notabilis), and secondarily with other Psittaciformes and the convergent hoatzin (Cuculiformes: Opisthocomus hoazin). S. habroptilus is the most massive and sexually dimorphic psittaciform in the world, and has the smallest relative wing size of any parrot. Alar pterylography of S. habroptilus is similar to that of other parrots, but remiges of the species are shorter, comparatively rounded, show less asymmetry of vanes, and have fewer interlocking barbules distally. S. habroptilus shows peculiarities of the sternum (vestigial carina, shortened spina externa), coracoid (elongate processus lateralis, enlarged angle with scapula), and humerus (prominent tuberculum ventrale, undercut crista bicipitalis). Pectoral skeletal dimensions of S. habroptilus are smaller than those of N. notabilis, whereas the reverse is true for pelvic dimensions. Most skeletal dimensions of S. habroptilus are more variable (within sexes) than those of N. notabilis. Proximal wing elements are disproportionately long and distal elements disproportionately short in S. habroptilus. The legs of S. habroptilus are characterized by disproportionately long femora and disproportionately short tarsometatarsi. Distinctive features of the pectoral musculature of S. habroptilus include a greatly reduced Mm. pectoralis thoracica and supracoracoideus, the absence of a distinct proximal muscle belly of M. propatagialis tendo longus, an extensive M. cucullaris capitis clavicularis associated with a voluminous crop, and an essentially tendinous M. sternocoracoideus. Relative to mean body mass, all dimensions of the antebrachial, carpometacarpal, digital, and patagial muscles are smaller in S. habroptilus than in N. notabilis. These aspects are compared to those of other flightless birds. Discussed are implications of flightlessness and associated large body size of S. habroptilus for issues of thermodynamics, metabolism, activity patterns, digestive anatomy, diet, reproduction, and insularit. © 1992 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号