首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Calcium dissociation constants (KD) were measured as a function of temperature for parvalbumin, a small acidic protein expressed abundantly in fast-twitch muscle, from the Arctic cod (Boreogadus saida) and compared to values previously determined for Antarctic and temperate zone teleosts. Estimates of KD were derived independently from fluorometric titrations and calorimetry. In addition, the primary structure of B. saida parvalbumin was determined. Calcium KDs for parvalbumin from B. saida were fundamentally similar to those for parvalbumins from Antarctic species (6.68+/-0.59 nM and 7.77+/-0.72 nM at 5 degrees C, respectively), but significantly different from temperate zone species (1.35+/-0.28 nM at 5 degrees C). However, estimates of KD for B. saida parvalbumin at 5 degrees C closely matched values for temperate zone fish at 25 degrees C (6.54+/-0.56 nM), recapitulating the prior observation that calcium affinity of parvalbumin is conserved at the native temperature of teleost fish. Full sequence of B. saida parvalbumin was generated using reverse-phase HPLC and RACE-PCR. The Arctic parvalbumin showed 83% homology to a carp parvalbumin. None of the 16 total substitutions between the two parvalbumins resided in the cation binding sites of the protein, indicating that the structural locus of the thermal sensitivity of function lies outside the active regions.  相似文献   

2.
Felitsky DJ  Record MT 《Biochemistry》2003,42(7):2202-2217
Thermodynamic and structural evidence indicates that the DNA binding domains of lac repressor (lacI) exhibit significant conformational adaptability in operator binding, and that the marginally stable helix-turn-helix (HTH) recognition element is greatly stabilized by operator binding. Here we use circular dichroism at 222 nm to quantify the thermodynamics of the urea- and thermally induced unfolding of the marginally stable lacI HTH. Van't Hoff analysis of the two-state unfolding data, highly accurate because of the large transition breadth and experimental access to the temperature of maximum stability (T(S); 6-10 degrees C), yields standard-state thermodynamic functions (deltaG(o)(obs), deltaH(o)(obs), deltaS(o)(obs), deltaC(o)(P,obs)) over the temperature range 4-40 degrees C and urea concentration range 0 相似文献   

3.
The contribution of the Ser45 hydrogen bond to biotin binding activation and equilibrium thermodynamics was investigated by biophysical and X-ray crystallographic studies. The S45A mutant exhibits a 1,700-fold greater dissociation rate and 907-fold lower equilibrium affinity for biotin relative to wild-type streptavidin at 37 degrees C, indicating a crucial role in binding energetics. The crystal structure of the biotin-bound mutant reveals only small changes from the wild-type bound structure, and the remaining hydrogen bonds to biotin retain approximately the same lengths. No additional water molecules are observed to replace the missing hydroxyl, in contrast to the previously studied D128A mutant. The equilibrium deltaG degrees, deltaH degrees, deltaS degrees, deltaC degrees(p), and activation deltaG++ of S45A at 37 degrees C are 13.7+/-0.1 kcal/mol, -21.1+/-0.5 kcal/mol, -23.7+/-1.8 cal/mol K, -223+/-12 cal/mol K, and 20.0+/-2.5 kcal/mol, respectively. Eyring analysis of the large temperature dependence of the S45A off-rate resolves the deltaH++ and deltaS++ of dissociation, 25.8+/-1.2 kcal/mol and 18.7+/-4.3 cal/mol K. The large increases of deltaH++ and deltaS++ in the mutant, relative to wild-type, indicate that Ser45 could form a hydrogen bond with biotin in the wild-type dissociation transition state, enthalpically stabilizing it, and constraining the transition state entropically. The postulated existence of a Ser45-mediated hydrogen bond in the wild-type streptavidin transition state is consistent with potential of mean force simulations of the dissociation pathway and with molecular dynamics simulations of biotin pullout, where Ser45 is seen to form a hydrogen bond with the ureido oxygen as biotin slips past this residue after breaking the native hydrogen bonds.  相似文献   

4.
The thermodynamic and kinetic parameters for spontaneous and oxime reactivation of dimethyl- and diethylphosphoryl butyrylcholinesterases (acylcholine acyl-hydrolase, EC 3.1.1.8) are reported. The enthalpy and entropy changes in both the binding (deltaH0 and deltaS0) and the dephosphorylation steps (deltaH* and deltaS*) were found to be coupled, resulting in a minor variation in free energy changes (deltaG0 and deltaG*). While neither enthalpies nor entropies alone bore any relationship with the kinetic parameters KD and kR, the changes of free energies (deltaG0 and deltaG*) correlated linearly with the logarithmic values of the dissociation constants (KD) and bimolecular rate constants (kR/KD), respectively. Compensation plots of entropies versus enthalpies gave straight lines with compensation temperatures of 275 K for the binding 260 K for the dephosphorylation. Spontaneous reactivation of dimethyl phosphoryl butyrylcholinesterase was investigated at various pH values and three temperatures. It implicated two catalytic sites with values of pKi of 9.4 and 7.5, and heats of ionisation of 5.3 and 9.6 kcal - mol-1, respectively. Possible conformational alteration of the inhibited enzyme arising from the binding of oximes is discussed.  相似文献   

5.
Suspensions of Bacillus cereus T, B. subtilis, and B. pumilus spores in water or potassium phosphate buffer were germinated by hydrostatic pressures of between 325 and 975 atm. Kinetics of germination at temperatures within the range of 25 to 44 degrees C were determined, and thermodynamic parameters were calculated. The optimum temperature for germination was dependent on pressure, species, suspending medium, and storage time after heat activation. Germination rates increased significantly with small increments of pressure, as indicated by high negative deltaV values of -230 +/- 5 cm3/mol for buffered B. subtilis (500 to 700 atm) and B. pumilus (500 atm) spores and -254 +/- 18 cm3/mol for aqueous B. subtilis (400 to 550 atm) spores at 40 degrees C and -612 +/- 41 cm3/mol for B. cereus (500 to 700 atm) spores at 25 degrees C. The ranges of thermodynamic constants calculated at 40 degrees C for buffered B. pumilus and B. subtilis spores at 500 and 600 atm and for aqueous B. subtilis spores at 500 atm were: Ea = 181,000 to 267,000 J/mol; deltaH = 178,000 to 264,000 J/mol; deltaG = 94,000 to 98,300 J/mol; deltaS = 264 to 544 J/mol per degree K. These values are consistent with the concept that the transformation of a dormant to a germinating spore induced by hydrostatic pressure involves either hydration or a reduction in the visocosity of the spore core and a conformational change of an enzyme.  相似文献   

6.
We investigated the dissociation of single-ring heptameric GroEL (SR1) by high hydrostatic pressure in the range 0.5-3.0 kbar. The kinetics were studied as a function of temperature in the range 15-35 degrees C. The dissociation processes at each pressure and temperature showed biphasic behavior. The slower rate (k1,obs) was confirmed to be the self-dissociation of SR1 at any specific temperature at atmospheric pressure. This dissociation was pressure independent and followed concentration-dependent first-order kinetics. The self-dissociation rates followed normal Eyring plots (In k1,obs/T vs. 1/T) from which the free energy of activation (deltaG++ = 22 +/- 0.3 kcal mol(-1)), enthalpy of activation (deltaH++ = 18 +/- 0.5 kcal mol(-1)), and entropy of activation (deltaS++ = -15 +/- 1 kcal mol(-1)) were evaluated. The effect of pressure on the dissociation rates resulted in nonlinear behavior (ln k2,obs vs. pressure) at all the temperatures studied indicating that the activation volumes were pressure dependent. Activation volumes at zero pressure (V++o) and compressibility factors (beta++) for the dissociation rates at the specific temperatures were calculated. This is the first systematic study where the self-dissociation of an oligomeric chaperonin as well as its activation parameters are reported.  相似文献   

7.
Formyltetrahydrofolate synthetase monomers are converted to catalytically active tetramers in the presence of monovalent cations. The stoichiometry of the reaction is 4M + 2C+ in equilibrium M4C2(2+). A positive deltaS compensates for an unfavorable positive deltaH so that the overall reaction is exergonic. Both deltaH and deltaS become more positive as the temperature is increased. Association of subunits of the enzyme prepared from Clostridium cylindrosporum is second order with respect to monomer concentration, consistent with a rate-determining dimerization step. Activation parameters for this step at 20 degrees are: deltaG, 12.6 kcal mol-1; deltaH, 12.5 kcal mol-1; deltaS, -05 e.u. The rate-limiting step for the cation-dependent association of Clostridium acidi-urici monomers is believed to be a conformational alteration since first order kinetics is observed. The Eyring plot of the kinetic data obtained for the C. acidi-urici system has a sharp break at 15 degrees. Activation parameters for cation-induced association at 20 degrees are: deltaG, 21.5 kcal mol-1; deltaH, 14.0 kcal mol-1; deltaS, -26.6 e.u.  相似文献   

8.
The interaction of bovine serum albumin with dihydrotestosterone bearing a spin label at C-3 was studied using electron spin resonance (ESR) spectroscopy. Quantitative binding parameters (Ka approximately 10(5) M-1; maximum binding capacity; two sites/mol albumin) obtained by ESR were in good agreement with those given by equilibrium dialysis. ESR study at various temperatures allowed the calculation of the thermodynamic parameters of the steroid-protein interaction: deltaG=-6.8 kcal/mol; deltaH=-7.9 kcal/mol; deltaS=-3.2 cal/mol per degree and confirmed a transition temperature of about 65 degrees C for albumin. Na, Liland Ca salts had a generally favorable effect on the interaction whereas other ions (e.g. Hg, Cu) impaired the binding process. Study of the width of the ESR spectra of the protein-bound spin-labelled steroid and extrapolation of a 2 T value to infinite viscosity (Azz coupling constant) indicated a non-polar binding site, which became increasingly hydrophobic as the temperature was raised. Since this methodology can give both pertinent quantitative and qualitative data, ESR spectroscopy should be of value in the study of steroid-protein interactions of biological significance.  相似文献   

9.
The thermodynamics of binding of the antibacterial peptide magainin 2 amide (M2a) to negatively charged small (SUVs) and large (LUVs) unilamellar vesicles has been studied with isothermal titration calorimetry (ITC) and CD spectroscopy at 45 degrees C. The binding isotherms as well as the ability of the peptide to permeabilize membranes were found to be qualitatively and quantitatively similar for both model membranes. The binding isotherms could be described with a surface partition equilibrium where the surface concentration of the peptide immediately above the plane of binding was calculated with the Gouy-Chapman theory. The standard free energy of binding was deltaG0 approximately -22 kJ/mol and was almost identical for LUVs and SUVs. However, the standard enthalpy and entropy of binding were distinctly higher for LUVs (deltaH0 = -15.1 kJ/mol, deltaS0 = 24.7 J/molK) than for SUVs (deltaH0 = -38.5 kJ/mol, deltaS0 = -55.3 J/molK). This enthalpy-entropy compensation mechanism is explained by differences in the lipid packing. The cohesive forces between lipid molecules are larger in well-packed LUVs and incorporation of M2a leads to a stronger disruption of cohesive forces and to a larger increase in the lipid flexibility than peptide incorporation into the more disordered SUVs. At 45 degrees C the peptide easily translocates from the outer to the inner monolayer as judged from the simulation of the ITC curves.  相似文献   

10.
The effect of temperature on the binding of thyroxine and triiodothyronine to thyroxine-binding globulin has been studied by equilibrium dialysis. Inclusion of ovalbumin in the dialysis mixture stabilized thyroxine-binding globulin against losses in binding activity which had been found to occur during equilibrium dialysis. Ovalbumin by itself bound the thyroid hormones very weakly and its binding could be neglected when analyzing the experimental results. At pH 7.4 and 37 degrees in 0.06 M potassium phosphate/0.7 mM EDTA buffer, thyroxine was bound to thyroxine-binding globulin at a single binding site with apparent association constants: at 5 degrees, K = 4.73 +/- 0.38 X 10(10) M-1; at 25 degrees, K = 1.55 +/- 0.17 X 10(10) M-1; and at 37 degrees, K = 9.08 +/- 0.62 X 10(9) M-1. Scatchard plots of the binding data for triiodothyronine indicated that the binding of this compound to thyroxine-binding globulin was more complex than that found for thyroxine. The data for triiodothyronine binding could be fitted by asuming the existence of two different classes of binding sites. At 5 degrees and pH 7.4 nonlinear regression analysis of the data yielded the values n1 = 1.04 +/- 0.10, K1 = 3.35 +/- 0.63 X 10(9) M-1 and n2 = 1.40 +/- 0.08, K2 = 0.69 +/- 0.20 X 10(8) M-1. At 25 degrees, the values for the binding constants were n1 = 1.04 +/- 0.38, K1 = 6.5 +/- 2.8 X 10(8) M-1 and n2 = 0.77 +/- 0.22, K2 = 0.43 +/- 0.62 X 10(8) M-1. At 37 degrees where less curvature was observed, the estimated binding constants were n1 = 1.02 +/- 0.06, K1 = 4.32 +/- 0.59 X 10(8) M-1 and n2K2 = 0.056 +/- 0.012 X 10(8) M-1. When n1 was fixed at 1, the resulting values obtained for the other three binding constants were at 25 degrees, K1 = 6.12 +/- 0.35 X 10(8) M-1, n2 = 0.72 +/- 0.18, K2 = 0.73 +/- 0.36 X 10(8) M-1; and at 37 degrees K1 = 3.80 +/- 0.22 X 10(8) M-1, n2 = 0.44 +/- 0.22, and K2 = 0.43 +/- 0.38 X 10(8) M-1. The thermodynamic values for thyroxine binding to thyroxine-binding globulin at 37 degrees and pH 7.4 were deltaG0 = -14.1 kcal/mole, deltaH0 = -8.96 kcal/mole, and deltaS0 = +16.7 cal degree-1 mole-1. For triiodothyronine at 37 degrees, the thermodynamic values for binding at the primary binding site were deltaG0 = -12.3 kcal/mole, deltaH0 = -11.9 kcal/mole, and deltaS0 = +1.4 cal degree-1 mole-1. Measurement of the pH dependence of binding indicated that both thyroxine and triiodothyronine were bound maximally in the region of physiological pH, pH 6.8 to 7.7.  相似文献   

11.
The acclimation temperature of carp does not affect the amount of cytochrome c oxidase per mg mitochondrial protein as revealed from the reduced-minus-oxidized difference spectra of red muscle mitochondria from cold- and warm-acclimated carp. There are no differences between cold- and warm-acclimated fish in the substrate binding properties of the enzyme as judged from the Km values for cytochrome c at 30 degrees C (3.34 +/- 0.ee microM, acclimation temperature 10 degrees C and 3.55 +/- 0.31 microM, acclimation temperature 30 degrees C). The molar activities of the enzyme, however, differ for both acclimation temperatures: when intercalated in the 10 degrees C-acclimated mitochondrial membrane, the enzyme can catalyze the oxidation of 117.6 +/- 17.2 mol ferrocytochrome c/s per mol heme a as compared with 85.6 +/- 17.2 in the 30 degrees C-acclimated membrane (experimental temperature 30 degrees C). Correspondingly, higher specific activities of the succinate oxidase system are observed in mitochondria from cold-acclimated carp as compared with those obtained from warm-acclimated carp. The results indicate that cold acclimation of the eurythermic carp is accompanied by a partial compensation of the acute effect of decreasing temperature on the activity of cytochrome c oxidase in red muscle mitochondria. Based on the temperature-induced lipid adaptation reported for carp red muscle mitochondria (Wodtke, E. (1980) Biochim. Biophys. Acta 640, 698--709), it is concluded that during thermal acclimation the molar activity of cytochrome c oxidase is controlled by viscotropic regulation. The results fit to the conception that cardiolipin constitutes a lipid shell (annulus) surrounding the oxidase within the native membrane, but that it is the bilayer fluidity and not the annular fluidity which determines the activity of cytochrome c oxidase.  相似文献   

12.
The stability of the N-terminal domain of the ribosomal protein L9, NTL9, from Bacillus stearothermophilus has been monitored by circular dichroism at various temperatures and chemical denaturant concentrations in H2O and D2O. The basic thermodynamic parameters for the unfolding reaction, deltaH(o), deltaS(o), and deltaC(o)p, were determined by global analysis of temperature and denaturant effects on stability. The data were well fit by a model that assumes stability varies linearly with denaturant concentration and that uses the Gibbs-Helmholtz equation to model changes in stability with temperature. The results obtained from the global analysis are consistent with information obtained from individual thermal and chemical denaturations. NTL9 has a maximum stability of 3.78 +/- 0.25 kcal mol(-1) at 14 degrees C. DeltaH(o)(25 degrees C) for protein unfolding equals 9.9 +/- 0.7 kcal mol(-1) and TdeltaS(o)++(25 degrees C) equals 6.2 +/- 0.6 kcal mol(-1). DeltaC(o)p equals 0.53 +/- 0.06 kcal mol(-1) deg(-1). There is a small increase in stability when D2O is substituted for H2O. Based on the results from global analysis, NTL9 is 1.06 +/- 0.60 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 5.8 +/- 3.6 degrees C in D2O. Based on the results from individual denaturation experiments, NTL9 is 0.68 +/- 0.68 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 3.5 +/- 2.1 degrees C in D2O. Within experimental error there are no changes in deltaH(o) (25 degrees C) when D2O is substituted for H2O.  相似文献   

13.
Thirty-four RNA duplexes containing single nucleotide bulges were optically melted, and the thermodynamic parameters deltaH degrees, deltaS degrees, deltaG degrees (37), and T(M) for each sequence were determined. Data from this study were combined with data from previous thermodynamic data [Longfellow, C. E., Kierzek, R., and Turner, D. H. (1990) Biochemistry 29, 278-85] to develop a model that will more accurately predict the free energy of an RNA duplex containing a single nucleotide bulge. Differences between purine and pyrimidine bulges as well as differences between Group I duplexes, those in which the bulge is not identical to either neighboring nucleotide, and Group II duplexes, those in which the bulge is identical to at least one neighboring nucleotide, were considered. The length of the duplex, non-nearest-neighbor effects, and bulge location were also examined. A model was developed which divides sequences into two groups: those with pyrimidine bulges and those with purine bulges. The proposed model for pyrimidine bulges predicts deltaG degrees (37,bulge) = 3.9 kcal/mol + 0.10deltaG degrees (37,nn) + beta, while the model for purine bulges predicts deltaG degrees (37,bulge) = 3.3 kcal/mol - 0.30deltaG degrees (37,nn) + beta, where beta has a value of 0.0 and -0.8 kcal/mol for Group I and Group II sequences, respectively, and deltaG degrees (37,nn) is the nearest-neighbor free energy of the base pairs surrounding the bulge. The conformation of bulge loops present in rRNA was examined. Three distinct families of structures were identified. The bulge loop was either extrahelical, intercalated, or in a "side-step" conformation.  相似文献   

14.
(-)-Menthide, a seven-membered lactone derived from the natural product (-)-menthol, was polymerized using a structurally defined zinc-alkoxide catalyst to form an aliphatic polyester. The polymer was fully characterized by NMR spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption ionization mass spectrometry. The polymerization reaction occurred in a controlled fashion and polymer samples with M(n) values up to 90 kg mol(-1) were obtained by varying the catalyst loading. Monitoring of the rate of polymerization by in situ FT-IR spectroscopy (ReactIR) revealed a first order dependence on (-)-menthide. The temperature dependence of the observed rate constant between 30 and 90 degrees C was well described by the Arrhenius equation and gave E(a) = 38.4 +/- 0.9 kJ mol(-1). Thermodynamic parameters (deltaH(p) degrees = -16.8 +/- 1.6 kJ mol(-1), deltaS(p) degrees = -27.4 +/- 4.6 J mol(-1) K(-1)) for the polymerization of (-)-menthide were also determined by measuring the equilibrium monomer concentration at different temperatures ranging from 40 to 100 degrees C. The equilibrium monomer concentrations at 25 and 100 degrees C were calculated to be 0.031 +/- 0.018 and 0.120 +/- 0.063 M, respectively.  相似文献   

15.
S Gessi  A Dalpiaz  K Varani  P A Borea 《Life sciences》1999,64(16):PL185-PL192
The temperature dependence of the binding of beta-carboline derivatives to the central benzodiazepine receptors was determined using [3H]-Ro 15-1788, as a selective radioligand. The compounds chosen display a wide spectrum of efficacies ranging from inverse agonists to agonists through antagonists. Assays were performed at 0, 10, 20, 25, 30, 35 degrees C in the absence and in the presence of 10 microM GABA. The temperature dependence of the affinity constants K(A)=1/K(D) or 1/Ki is shown in the van't Hoff plots (In K(A) versus 1/T) for each compound. Thermodynamic parameters deltaG degrees, deltaH degrees and deltaS degrees were determined by regression analysis of the plots which were linear in the range of temperatures investigated. Moreover, their slopes were systematically positive indicating that the binding of the compounds analyzed to benzodiazepine receptors is essentially enthalpy-driven both in the presence and in the absence of GABA. We verified that the ratio of affinity constant values in the presence and absence of GABA 10 microM (GABA ratio) (<1 for inverse agonists, =1 for antagonists, >1 for agonists), strongly correlates with the corresponding differences of deltaH degrees and deltaS degrees values obtained for each compound in the absence and in the presence of GABA. These results suggest that binding thermodynamic analysis of BDZ receptor ligands, in the presence and in the absence of GABA, permits to discriminate inverse agonists from antagonists, and agonists.  相似文献   

16.
The binding of four epitope-related peptides and three library-derived, epitope-unrelated peptides of different lengths (10-14 amino acids) and sequence by anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment was studied by isothermal titration calorimetry. The binding constants K(A) at 25 degrees C vary between 5.1 x 10(7) M (-1) for the strongest and 1.4 x 10(5) M (-1) for the weakest binder. For each of the peptides complex formation is enthalpically driven and connected with unfavorable entropic contributions; however, the ratio of enthalpy and entropy contributions to deltaG(0) differs markedly for the individual peptides. A plot of -deltaH(0) vs -TdeltaS(0) shows a linear correlation of the data for a wide variety of experimental conditions as expected for a process with deltaC(p) much larger than deltaS(0). The dissimilarity of deltaC(p) and deltaS(0) also explains why deltaH(0) and TdeltaS(0) show similar temperature dependences resulting in relatively small changes of deltaG(0) with temperature. The heat capacity changes deltaC(p) upon antibody-peptide complex formation determined for three selected peptides vary only in a small range, indicating basic thermodynamic similarity despite different key residues interacting in the complexes. Furthermore, the comparison of van't Hoff and calorimetric enthalpies point to a non-two-state binding mechanism. Protonation effects were excluded by measurements in buffers of different ionization enthalpies. Differences in the solution conformation of the peptides as demonstrated by circular dichroic measurements do not explain different binding affinities of the peptides; specifically a high helix content in solution is not essential for high binding affinity despite the helical epitope conformation in the crystal structure of p24.  相似文献   

17.
We have examined the kinetics and thermodynamics of the exchange of a fluorescent amphiphile derived from a phospholipid, NBD-DMPE, between serum albumin and the serum lipoproteins of high density (HDL2 and HDL3), LDL, and VLDL. Binding of the fluorescent lipid amphiphile to bovine serum albumin is characterized, at 35 degrees C, by an equilibrium binding constant of approximately 3 x 10(6) M(-1) and a characteristic time < or = 0.1 s. Association of NBD-DMPE with the lipoprotein particles, if considered as a partitioning of amphiphile monomers between the aqueous phase and the lipoprotein particles, is characterized by an equilibrium partition coefficient between 10(5) and 10(6), being highest for LDL and lowest for HDL. The association of NBD-DMPE monomers with lipoprotein particles can be described by insertion rate constants on the order of 10(5) M(-1) s(-1) for VLDL and LDL and 10(4) M(-1) s(-1) for HDL. The desorption rate constants are on the order of 10(-5) s(-1) for all particles. The study was performed as a function of temperature between 15 and 35 degrees C. This permitted the calculation of the equilibrium thermodynamic parameters (deltaG(o), deltaH(o), and deltaS(o)) as well as the activation parameters (deltaG++(o), deltaH++(o), and deltaS++(o)) for the insertion and desorption processes. The association equilibrium is dominated by the entropic contribution to the free energy in all cases. The results are discussed in relation to phospholipid and amphiphile exchange phenomena involving the lipoproteins.  相似文献   

18.
An analysis of the unfolding and refolding curves at equilibrium of dimeric bovine odorant binding protein (bOBP) has been performed. Unfolding induced by guanidinium chloride (GdnHCl) is completely reversible as far as structure and ligand binding capacity are concerned. The transition curves, as obtained by fluorescence and ellipticity measurements, are very similar and have the same protein concentration-independent midpoint (C1/2 approximately 2.6 M). This result implies a sequential, rather than a concerted, unfolding mechanism, with the involvement of an intermediate. However, since it has not been detected, this intermediate must be present in small amounts or have the same optical properties of either native or denatured protein. The thermodynamic best fit parameters, obtained according to a simple two-state model, are: deltaG degrees un,w = 5.0 +/- 0.6 kcal mol(-1), m = 1.9 +/- 0.2 kcal mol(-1) M(-1) and C1/2 = 2.6 +/- 0.1 M. The presence of the ligand dihydromyrcenol has a stabilising effect against unfolding by GdnHCl, with an extrapolated deltaG degrees un,w of 22.2 +/- 0.9 kcal mol(-1), a cooperative index of 3.2 +/- 0.3 and a midpoint of 4.6 +/- 0.4 M. The refolding curves, recorded after 24 h from dilution of denaturant are not yet at equilibrium: they show an apparently lower midpoint (C1/2 = 2.2 M), but tend to overlap the unfolding curve after several days. In contrast to chromatographic unfolding data, which fail to reveal the presence of folded intermediates, chromatographic refolding data as a function of time clearly show a rapid formation of folded monomers, followed by a slower step leading to folded dimers. Therefore, according to this result, we believe that the preferential unfolding/refolding mechanism is one in which dimer dissociation occurs before unfolding rather than the reverse.  相似文献   

19.
We have investigated the effect of pressure and temperature on the structural and thermodynamic stability of a protein dihydrofolate reductase from a deep-sea bacterium Moritella profunda in its folate-bound form in the pressure range between 3 and 375 MPa and the temperature range between -5 and 30 degrees C. The on-line cell variable pressure 1H NMR spectroscopy has been used to analyze the chemical shift and signal intensity in one-dimensional 1H NMR spectra. Thermodynamic analysis based on signal intensities from protons in the core part indicates that the thermodynamic stability of Moritella profunda DHFR is relatively low over the temperature range between -5 and 30 degrees C (deltaG0=15.8 +/- 4.1 kJ/mol at 15 degrees C), but is well adapted to the living environment of the bacterium (2 degrees C and 28 MPa), with the maximum stability around 5 degrees C (at 0.1 MPa) and a relatively small volume change upon unfolding (deltaV= 66 +/- 19 ml/mol). Despite the relatively low overall stability, the conformation in the core part of the folded protein remains intact up to approximately 200 MPa, showing marked stability of the core of this protein.  相似文献   

20.
Dihydroorotase (DHOase, EC 3.5.2.3) from the extreme thermophile Bacillus caldolyticus has been subcloned, sequenced, expressed, and purified as a monomer. The catalytic properties of this thermophilic DHOase have been compared with another type I enzyme, the DHOase domain from hamster, to investigate how the thermophilic enzyme is adapted to higher temperatures. B. caldolyticus DHOase has higher Vmax and Ks values than hamster DHOase at the same temperature. The thermodynamic parameters for the binding of L-dihydroorotate were determined at 25 degrees C for hamster DHOase (deltaG = -6.9 kcal/mol, deltaH = -11.5 kcal/mol, TdeltaS = -4.6 kcal/mol) and B. caldolyticus DHOase (deltaG = -5.6 kcal/mol, deltaH = -4.2 kcal/mol, TdeltaS = +1.4 kcal/mol). The smaller enthalpy release and positive entropy for thermophilic DHOase are indicative of a weakly interacting Michaelis complex. Hamster DHOase has an enthalpy of activation of 12.3 kcal/mol, similar to the release of enthalpy upon substrate binding, rendering the kcat/Ks value almost temperature independent. B. caldolyticus DHOase shows a decrease in the enthalpy of activation from 12.2 kcal/mol at temperatures from 30 to 50 degrees C to 5.3 kcal/mol for temperatures of 50-70 degrees C. Vibrational energy at higher temperatures may facilitate the transition ES --> ES(double dagger), making kcat/Ks almost temperature independent. The pseudo-first-order rate constant for water attack on L-dihydroorotate, based on experiments at elevated temperature, is 3.2 x 10(-11) s(-1) at 25 degrees C, with deltaH(double dagger) = 24.7 kcal/mol and TdeltaS(double dagger) = -6.9 kcal/mol. Thus, hamster DHOase enhances the rate of substrate hydrolysis by a factor of 1.6 x 10(14), achieving this rate enhancement almost entirely by lowering the enthalpy of activation (delta deltaH(double dagger) = -19.5 kcal/mol). Both the rate enhancement and transition state affinity of hamster DHOase increase steeply with decreasing temperature, consistent with the development of H-bonds and electrostatic interactions in the transition state that were not present in the enzyme-substrate complex in the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号