首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule nucleation from centrosomes involves a lockwasher-shaped protein complex containing gamma-tubulin, named the gamma-tubulin ring complex (gammaTuRC). Here we investigate the mechanism by which the gammaTuRC nucleates microtubules, using a direct labelling method to visualize the behaviour of individual gammaTuRCs. A fluorescently-labelled version of the gammaTuRC binds to the minus ends of microtubules nucleated in vitro. Both gammaTuRC-mediated nucleation and binding of the gammaTuRC to preformed microtubules block further minus-end growth and prevent microtubule depolymerization. The gammaTuRC therefore acts as a minus-end-capping protein, as confirmed by electron-microscopic examination of gold-labelled gammaTuRCs. These data support a nucleation model for gammaTuRC function that involves capping of microtubules.  相似文献   

2.
The gamma-tubulin ring complex (gammaTuRC) is a large multi-protein complex that is required for microtubule nucleation from the centrosome. Here, we show that the GCP-WD protein (originally named NEDD1) is the orthologue of the Drosophila Dgrip71WD protein, and is a subunit of the human gammaTuRC. GCP-WD has the properties of an attachment factor for the gammaTuRC: depletion or inhibition of GCP-WD results in loss of the gammaTuRC from the centrosome, abolishing centrosomal microtubule nucleation, although the gammaTuRC is intact and able to bind to microtubules. GCP-WD depletion also blocks mitotic chromatin-mediated microtubule nucleation, resulting in failure of spindle assembly. Mitotic phosphorylation of GCP-WD is required for association of gamma-tubulin with the spindle, separately from association with the centrosome. Our results indicate that GCP-WD broadly mediates targeting of the gammaTuRC to sites of microtubule nucleation and to the mitotic spindle, which is essential for spindle formation.  相似文献   

3.
The gamma-tubulin ring complex (gammaTuRC) forms an essential template for microtubule nucleation in animal cells. The molecular composition of the gammaTuRC has been described; however, the functions of the subunits proposed to form the cap structure remain to be characterized in vivo. In Drosophila, the core components of the gammaTuRC are essential for mitosis, whereas the cap component Grip75 is not required for viability but functions in bicoid RNA localization during oogenesis. The other cap components have not been analyzed in vivo. We report the functional characterization of the cap components Grip128 and Grip75. Animals with mutations in Dgrip128 or Dgrip75 are viable, but both males and females are sterile. Both proteins are required for the formation of distinct sets of microtubules, which facilitate bicoid RNA localization during oogenesis, the formation of the central microtubule aster connecting the meiosis II spindles in oocytes and cytokinesis in male meiosis. Grip75 and Grip128 anchor the axoneme at the nucleus during sperm elongation. We propose that Grip75 and Grip128 are required to tether microtubules at specific microtubule-organizing centers, instead of being required for general microtubule nucleation. The gammaTuRC cap structure may be essential only for non-centrosome-based microtubule functions.  相似文献   

4.
The gamma-tubulin ring complex (gammaTuRC) is important for microtubule nucleation from the centrosome. In addition to gamma-tubulin, the Drosophila gammaTuRC contains at least six subunits, three of which [Drosophila gamma ring proteins (Dgrips) 75/d75p, 84, and 91] have been characterized previously. Dgrips84 and 91 are present in both the small gamma-tubulin complex (gammaTuSC) and the gammaTuRC, while the remaining subunits are found only in the gammaTuRC. To study gammaTuRC assembly and function, we first reconstituted gammaTuSC using the baculovirus expression system. Using the reconstituted gammaTuSC, we showed for the first time that this subcomplex of the gammaTuRC has microtubule binding and capping activities. Next, we characterized two new gammaTuRC subunits, Dgrips128 and 163, and showed that they are centrosomal proteins. Sequence comparisons among all known gammaTuRC subunits revealed two novel sequence motifs, which we named grip motifs 1 and 2. We found that Dgrips128 and 163 can each interact with gammaTuSC. However, this interaction is insufficient for gammaTuRC assembly.  相似文献   

5.
Microtubule nucleation and organization by the centrosome require gamma-tubulin, a protein that exists in a macromolecular complex called the gamma-tubulin ring complex (gammaTuRC). We report characterization of CDK5RAP2, a novel centrosomal protein whose mutations have been linked to autosomal recessive primary microcephaly. In somatic cells, CDK5RAP2 localizes throughout the pericentriolar material in all stages of the cell cycle. When overexpressed, CDK5RAP2 assembled a subset of centrosomal proteins including gamma-tubulin onto the centrosomes or under the microtubule-disrupting conditions into microtubule-nucleating clusters in the cytoplasm. CDK5RAP2 associates with the gammaTuRC via a short conserved sequence present in several related proteins found in a range of organisms from fungi to mammals. The binding of CDK5RAP2 is required for gammaTuRC attachment to the centrosome but not for gammaTuRC assembly. Perturbing CDK5RAP2 function delocalized gamma-tubulin from the centrosomes and inhibited centrosomal microtubule nucleation, thus leading to disorganization of interphase microtubule arrays and formation of anastral mitotic spindles. Together, CDK5RAP2 is a pericentriolar structural component that functions in gammaTuRC attachment and therefore in the microtubule organizing function of the centrosome. Our findings suggest that centrosome malfunction due to the CDK5RAP2 mutations may underlie autosomal recessive primary microcephaly.  相似文献   

6.
The gamma-tubulin ring complex (gammaTuRC) is a protein complex of relative molecular mass approximately 2.2 x 10(6) that nucleates microtubules at the centrosome. Here we use electron-microscopic tomography and metal shadowing to examine the structure of isolated Drosophila gammaTuRCs and the ends of microtubules nucleated by gammaTuRCs and by centrosomes. We show that the gammaTuRC is a lockwasher-like structure made up of repeating subunits, topped asymmetrically with a cap. A similar capped ring is also visible at one end of microtubules grown from isolated gammaTuRCs and from centrosomes. Antibodies against gamma-tubulin label microtubule ends, but not walls, in centrosomes. These data are consistent with a template-mediated mechanism for microtubule nucleation by the gammaTuRC.  相似文献   

7.
Glycogen synthase kinase-3beta (GSK-3beta) is known to play a role in the regulation of the dynamics of microtubule networks in cells. Here we show the role of GSK-3beta in the proper formation of the mitotic spindles through an interaction with GCP5, a component of the gamma-tubulin ring complex (gammaTuRC). GCP5 bound directly to GSK-3beta in vitro, and their interaction was also observed in intact cells at endogenous levels. Depletion of GCP5 dramatically reduced the GCP2 and gamma-tubulin in the gammaTuRC fraction of sucrose density gradients and disrupted gamma-tubulin localization to the spindle poles in mitotic cells. GCP5 appears to be required for the formation or stability of gammaTuRC and the recruitment of gamma-tubulin to the spindle poles. A GSK-3 inhibitor not only led to the accumulation of gamma-tubulin and GCP5 at the spindle poles but also enhanced microtubule nucleation activity at the spindle poles. Depletion of GCP5 rescued this disrupted organization of spindle poles observed in cells treated with the GSK-3 inhibitor. Furthermore, the inhibition of GSK-3 enhanced the binding of gammaTuRC to the centrosome isolated from mitotic cells in vitro. Our findings suggest that GSK-3beta regulates the localization of gammaTuRC, including GCP5, to the spindle poles, thereby controlling the formation of proper mitotic spindles.  相似文献   

8.
The gamma-tubulin ring complex (gammaTuRC), purified from the cytoplasm of vertebrate and invertebrate cells, is a microtubule nucleator in vitro. Structural studies have shown that gammaTuRC is a structure shaped like a lock-washer and topped with a cap. Microtubules are thought to nucleate from the uncapped side of the gammaTuRC. Consequently, the cap structure of the gammaTuRC is distal to the base of the microtubules, giving the end of the microtubule the shape of a pointed cap. Here, we report the cloning and characterization of a new subunit of Xenopus gammaTuRC, Xgrip210. We show that Xgrip210 is a conserved centrosomal protein that is essential for the formation of gammaTuRC. Using immunogold labeling, we found that Xgrip210 is localized to the ends of microtubules nucleated by the gammaTuRC and that its localization is more distal, toward the tip of the gammaTuRC-cap structure, than that of gamma-tubulin. Immunodepletion of Xgrip210 blocks not only the assembly of the gammaTuRC, but also the recruitment of gamma-tubulin and its interacting protein, Xgrip109, to the centrosome. These results suggest that Xgrip210 is a component of the gammaTuRC cap structure that is required for the assembly of the gammaTuRC.  相似文献   

9.
The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein gamma-tubulin. In mammals, gamma-tubulin associates with additional proteins into a large complex, the gamma-tubulin ring complex (gammaTuRC). We characterize NEDD1, a centrosomal protein that associates with gammaTuRCs. We show that the majority of gammaTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of gamma-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to gammaTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of gamma-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of gamma-tubulin to the centrosome.  相似文献   

10.
The gamma-tubulin ring complex (gammaTuRC), consisting of multiple protein subunits, can nucleate microtubule assembly. Although many subunits of the gammaTuRC have been identified, a complete set remains to be defined in any organism. In addition, how the subunits interact with each other to assemble into gammaTuRC remains largely unknown. Here, we report the characterization of a novel gammaTuRC subunit, Drosophila gamma ring protein with WD repeats (Dgp71WD). With the exception of gamma-tubulin, Dgp71WD is the only gammaTuRC component identified to date that does not contain the grip motifs, which are signature sequences conserved in gammaTuRC components. By performing immunoprecipitations after pair-wise coexpression in Sf9 cells, we show that Dgp71WD directly interacts with the grip motif-containing gammaTuRC subunits, Dgrips84, 91, 128, and 163, suggesting that Dgp71WD may play a scaffolding role in gammaTuRC organization. We also show that Dgrips128 and 163, like Dgrips84 and 91, can interact directly with gamma-tubulin. Coexpression of any of these grip motif-containing proteins with gamma-tubulin promotes gamma-tubulin binding to guanine nucleotide. In contrast, in the same assay Dgp71WD interacts with gamma-tubulin but does not facilitate nucleotide binding.  相似文献   

11.
Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.  相似文献   

12.
CDK5RAP2 is a human microcephaly protein that contains a γ-tubulin complex (γ-TuC)-binding domain conserved in Drosophila melanogaster centrosomin and Schizosaccharomyces pombe Mto1p and Pcp1p, which are γ-TuC-tethering proteins. In this study, we show that this domain within CDK5RAP2 associates with the γ-tubulin ring complex (γ-TuRC) to stimulate its microtubule-nucleating activity and is therefore referred to as the γ-TuRC-mediated nucleation activator (γ-TuNA). γ-TuNA but not its γ-TuC-binding-deficient mutant stimulates microtubule nucleation by purified γ-TuRC in vitro and induces extensive, γ-TuRC-dependent nucleation of microtubules in a microtubule regrowth assay. γ-TuRC bound to γ-TuNA contains NME7, FAM128A/B, and actin in addition to γ-tubulin and GCP2-6. RNA interference-mediated depletion of CDK5RAP2 impairs both centrosomal and acentrosomal microtubule nucleation, although γ-TuRC assembly is unaffected. Collectively, these results suggest that the γ-TuNA found in CDK5RAP2 has regulatory functions in γ-TuRC-mediated microtubule nucleation.  相似文献   

13.
Current models of microtubule assembly from pure tubulin involve a nucleation phase followed by microtubule elongation at a constant polymer number. Both the rate of microtubule nucleation and elongation are thought to be tightly influenced by the free GTP-tubulin concentration, in a law of mass action-dependent manner. However, these basic hypotheses have remained largely untested due to a lack of data reporting actual measurements of the microtubule length and number concentration during microtubule assembly.Here, we performed simultaneous measurements of the polymeric tubulin concentration, of the free GTP-tubulin concentration, and of the microtubule length and number concentration in both polymerizing and depolymerizing conditions. In agreement with previous work we find that the microtubule nucleation rate is strongly dependent on the initial GTP-tubulin concentration. But we find that microtubule nucleation persists during microtubule elongation. At any given initial tubulin-GTP concentration, the microtubule nucleation rate remains constant during polymer assembly, despite the wide variation in free GTP-tubulin concentration. We also find a remarkable constancy of the rate of microtubule elongation during assembly. Apparently, the rate of microtubule elongation is intrinsic to the polymers, insensitive to large variations of the free GTP-tubulin concentration. Finally we observe that when, following assembly, microtubules depolymerize below the free GTP-tubulin critical concentration, the rate-limiting factor for disassembly is the frequency of microtubule catastrophe. At all time-points during disassembly, the microtubule catastrophe frequency is independent of the free GTP-tubulin concentration but, as the microtubule nucleation rate, is strongly dependent on the initial free GTP-tubulin concentration. We conclude that the dynamics of both microtubule assembly and disassembly depend largely on factors other than the free GTP-tubulin concentration. We propose that intrinsic structural factors and endogenous regulators, whose concentration varies with the initial conditions, are also major determinants of these dynamics.  相似文献   

14.
It was recently reported that GTP-bound Ran induces microtubule and pseudo-spindle assembly in mitotic egg extracts in the absence of chromosomes and centrosomes, and that chromosomes induce the assembly of spindle microtubules in these extracts through generation of Ran-GTP. Here we examine the effects of Ran-GTP on microtubule nucleation and dynamics and show that Ran-GTP has independent effects on both the nucleation activity of centrosomes and the stability of centrosomal microtubules. We also show that inhibition of Ran-GTP production, even in the presence of duplicated centrosomes and kinetochores, prevents assembly of a bipolar spindle in M-phase extracts.  相似文献   

15.
Aberrant centrosome organisation with ensuing alterations of microtubule nucleation capacity enables tumour cells to proliferate and invade despite increased genomic instability. CEP192 is a key factor in the initiation process of centrosome duplication and in the control of centrosome microtubule nucleation. However, regulatory means of CEP192 have remained unknown. Here, we report that FBXL13, a binding determinant of SCF (SKP1‐CUL1‐F‐box)‐family E3 ubiquitin ligases, is enriched at centrosomes and interacts with the centrosomal proteins Centrin‐2, Centrin‐3, CEP152 and CEP192. Among these, CEP192 is specifically targeted for proteasomal degradation by FBXL13. Accordingly, induced FBXL13 expression downregulates centrosomal γ‐tubulin and disrupts centrosomal microtubule arrays. In addition, depletion of FBXL13 induces high levels of CEP192 and γ‐tubulin at the centrosomes with the consequence of defects in cell motility. Together, we characterise FBXL13 as a novel regulator of microtubule nucleation activity and highlight a role in promoting cell motility with potential tumour‐promoting implications.  相似文献   

16.
We have previously identified a new centrosomal protein, centrosomal protein 4.1-associated protein (CPAP), which is associated with the gamma-tubulin complex. Here, we report that CPAP carries a novel microtubule-destabilizing motif that not only inhibits microtubule nucleation from the centrosome but also depolymerizes taxol-stabilized microtubules. Deletion mapping and functional analyses have defined a 112-residue CPAP that is necessary and sufficient for microtubule destabilization. This 112-residue CPAP directly recognizes the plus end of a microtubule and inhibits microtubule nucleation from the centrosome. Biochemical and functional analyses revealed that this 112-residue CPAP also binds to tubulin dimers, resulting in the destabilization of microtubules. Using the tetracycline-controlled system (tet-off), we observed that overexpression of this 112-residue CPAP inhibits cell proliferation and induces apoptosis after G2/M arrest. The possible mechanisms of how this 112-residue motif in CPAP that inhibits microtubule nucleation from the centrosome and disassembles preformed microtubules are discussed.  相似文献   

17.
Centrosomes are the major sites for microtubule nucleation in mammalian cells, although both chromatin- and kinetochore-mediated microtubule nucleation have been observed during spindle assembly. As yet, it is still unclear whether these pathways are coregulated, and the molecular requirements for microtubule nucleation at kinetochore are not fully understood. This work demonstrates that kinetochores are initial sites for microtubule nucleation during spindle reassembly after nocodazole. This process requires local RanGTP accumulation concomitant with delocalization from kinetochores of the hydrolysis factor RanGAP1. Kinetochore-driven microtubule nucleation is also activated after cold-induced microtubule disassembly when centrosome nucleation is impaired, e.g., after Polo-like kinase 1 depletion, indicating that dominant centrosome activity normally masks the kinetochore-driven pathway. In cells with unperturbed centrosome nucleation, defective RanGAP1 recruitment at kinetochores after treatment with the Crm1 inhibitor leptomycin B activates kinetochore microtubule nucleation after cold. Finally, nascent microtubules associate with the RanGTP-regulated microtubule-stabilizing protein HURP in both cold- and nocodazole-treated cells. These data support a model for spindle assembly in which RanGTP-dependent abundance of nucleation/stabilization factors at centrosomes and kinetochores orchestrates the contribution of the two spindle assembly pathways in mammalian cells. The complex of RanGTP, the export receptor Crm1, and nuclear export signal-bearing proteins regulates microtubule nucleation at kinetochores.  相似文献   

18.
Microtubule assembly from purified tubulin preparations involves both microtubule nucleation and elongation. Whereas elongation is well documented, microtubule nucleation remains poorly understood because of difficulties in isolating molecular intermediates between tubulin dimers and microtubules. Based on kinetic studies, we have previously proposed that the basic building blocks of microtubule nuclei are persistent tubulin oligomers, present at the onset of tubulin assembly. Here we have tested this model directly by isolating nucleation-competent cross-linked tubulin oligomers. We show that such oligomers are composed of 10-15 laterally associated tubulin dimers. In the presence of added free tubulin dimers, several oligomers combine to form microtubule nuclei competent for elongation. We provide evidence that these nuclei have heterogeneous structures, indicating unexpected flexibility in nucleation pathways. Our results suggest that microtubule nucleation in purified tubulin solution is mechanistically similar to that templated by gamma-tubulin ring complexes with the exception that in the absence of gamma-tubulin complexes the production of productive microtubule seeds from tubulin oligomers involves trial and error and a selection process.  相似文献   

19.
Neurons, like all cells, face the problem that tubulin forms microtubules with too many or too few protofilaments (pfs). Cells overcome this heterogeneity with the γ-tubulin ring complex, which provides a nucleation template for 13-pf microtubules. Doublecortin (DCX), a protein that stabilizes microtubules in developing neurons, also nucleates 13-pf microtubules in?vitro. Using fluorescence microscopy assays, we show that the binding of DCX to microtubules is optimized for the lateral curvature of the 13-pf lattice. This sensitivity depends on a cooperative interaction wherein DCX molecules decrease the dissociation rate of their neighbors. Mutations in DCX found in patients with subcortical band heterotopia weaken these cooperative interactions. Using assays with dynamic microtubules, we discovered that DCX binds to polymerization intermediates at growing microtubule ends. These results support a mechanism for stabilizing 13-pf microtubules that allows DCX to template new 13-pf microtubules through associations with the sides of the microtubule lattice.  相似文献   

20.
Survivin is a member of the chromosomal passenger complex implicated in kinetochore attachment, bipolar spindle formation, and cytokinesis. However, the mechanism by which survivin modulates these processes is unknown. Here, we show by time-lapse imaging of cells expressing either green fluorescent protein (GFP)-alpha-tubulin or the microtubule plus-end binding protein GFP-EB1 that depletion of survivin by small interfering RNAs (siRNAs) increased both the number of microtubules nucleated by centrosomes and the incidence of microtubule catastrophe, the transition from microtubule growth to shrinking. In contrast, survivin overexpression reduced centrosomal microtubule nucleation and suppressed both microtubule dynamics in mitotic spindles and bidirectional growth of microtubules in midbodies during cytokinesis. siRNA depletion or pharmacologic inhibition of another chromosomal passenger protein Aurora B, had no effect on microtubule dynamics or nucleation in interphase or mitotic cells even though mitosis was impaired. We propose a model in which survivin modulates several mitotic events, including spindle and interphase microtubule organization, the spindle assembly checkpoint and cytokinesis through its ability to modulate microtubule nucleation and dynamics. This pathway may affect the microtubule-dependent generation of aneuploidy and defects in cell polarity in cancer cells, where survivin is commonly up-regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号