首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hysteretic nature of phosphoenolpyruvate carboxylase from maize was investigated at pH 7 by (a) transient kinetic studies, (b) kinetics of inhibition by 2-PG, a structural analog of PEP, and (c) effect of 2-PG on equilibrium binding of Mg2+. The lag time as a function of substrate concentration was nonlinear with an oblique asymptote. During steady state, cooperative kinetics for Mg2+ was changed to hyperbolic kinetics in the presence of 2-PG. Studies on the equilibrium binding of Mg2+ with the help of an external fluorescent probe, 8-anilino-6-naphthalinosulfonate showed that the hyperbolic binding of Mg2+ was changed to cooperative binding in the presence of 2-PG. On the basis of these results along with the results presented in the preceding paper, a fully concerted sequential model with subunit interaction is proposed for PEPC.  相似文献   

2.
The activation properties of the form I and form II ribulose 1,5-bisphosphate carboxylases from Rhodopseudomonas sphaeroides were examined. Both enzymes have a requirement of Mg2+ for optimal activity. Mn2+, Ni2+, and Co2+ can also support activity of the form I enzyme, whereas only Mn2+ can substitute for Mg2+ with the form II enzyme. The effect of different preincubations on the carboxylase reaction was also examined. Both enzymes exhibited a lag when preincubated with other than Mg2+ and CO2 before assay, but the lag was much more pronounced and the rate of the reaction was slower with the form I enzyme under these conditions. Activation of the form I carboxylase By Mg2+ and CO2 occurred more rapidly than that of the form II enzyme. The results obtained with the two distinct forms of carboxylase from R. sphaeroides, as well as studies with the spinach and Rhodospirillum rubrum enzymes, thus indicate that the presence of the small subunit affects the rate of activation by Mg2+ and CO2 as well as the rate of reactivation of ribulose bisphosphate-inactivated enzyme.  相似文献   

3.
The shape of the time curve for the aminoacylation of tRNA has been investigated using five different amino acid:tRNA ligases. Four of these enzymes showed a lag in the time curve during the early phase of the first catalytic turnover of the enzyme. In each case, the lag period could be abolished by preincubating the ligase with amino acid, ATP, and Mg2+ under conditions known to give an aminoacyl adenylate-enzyme complex. With all five ligases the steady state rate of transfer from the preformed aminoacyl-adenylate complex to tRNA was approximately the same as that of the overall reaction.  相似文献   

4.
The lactate dehydrogenase from Streptococcus faecalis is activated either by fructose 1,6-bisphosphate or by divalent cations such as Mn2+ or Co2+. With both types of activator, a lag is observed before attainment of the steady state rate of pyruvate reduction if the activator is added to the enzyme at the same time as the substrates. This lag can be largely abolished by preincubation of enzyme with activator before mixing with substrates. For fructose 1,6-bisphosphate (Fru(1,6)P2) as the activator, the rate constant for the lag phase showed a linear dependence on activator concentration but was independent of enzyme concentration. This suggests that binding of fructose 1,6-bisphosphate induces a conformational change in the enzyme which leads to increased activity, without association of enzyme subunits or dimers. With Co2+ as activator, the rate constant for the lag phase showed a hyperbolic dependence on Co2+ concentration and was also dependent on enzyme concentration. This suggests that activation by Co2+, in contrast to that by Fru(1,6)P2, involves association of enzyme dimers, followed by ligand binding.  相似文献   

5.
Preincubation of submitochondrial particles (SMP) from beef heart in a reaction mixture containing low concentrations of Mg2+ induces a time lag in the NADH:oxidase activity. Preconditioning of the SMP by NADH, but not by NAD+, prevents the Mg2+-related time lag. The data obtained show that there exists a tight binding site for Mg2+ regulating the rate of electron transfer from NADH to the natural acceptor. The ability of Mg2+ to form a catalytically inactive complex with the enzyme is regulated by NADH.  相似文献   

6.
The substrate proton of the pyruvate kinase reaction   总被引:3,自引:0,他引:3  
I A Rose  D J Kuo 《Biochemistry》1989,28(25):9579-9585
The pyruvate kinase reaction occurs in separate phosphate- and proton-transfer stages: (formula; see text) K+, Mg2+, and Mg.ADP are known to be required for the phosphoryl transfer step, and K+ and Mg2+ with allosteric stimulation by MgATP are important for proton transfer. This paper uses the isotope trapping method with 3H-labeled water to identify the proton donor and determine when in the sequence of the catalytic cycle it is generated. When the enzyme was allowed to exchange briefly with 3H2O (pulse phase) and then diluted into a mixture containing PEP, ADP, and the cofactor K+, Mg2+, or Co2+ in D2O (chase phase), an amount of [3H]pyruvate was formed in great excess of the amount expected from steady-state catalysis in the diluted 3H-labeled water. With K+, Mg2+, and ADP at pH 6-9.5 in the pulse phase, a limit of 1.25 enzyme equiv of 3H were trapped. The concentration of PEP required for half-maximum trapping was 14-fold greater than its steady-state Km. Therefore, the rate constant for dissociation of the donor proton is estimated to be 14 times the steady-state rate of [3H]pyruvate formation, approximately 109 s-1, or 1500 s-1. At pD 6.4, Mg2+ and ADP were required in the chase, indicating that the ADP in the pulse was not bound tightly enough to be used in the chase. At pD 9.4, ADP was not required in the chase, only Mg2+ or Co2+, making it possible to limit the chase to one turnover from hybrid labeled complexes such as E.K.Mg.CoADP or E.K.Co.MgADP and PEP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The fluorescence of (Na,K)-ATPase labeled with 5-iodoacetamidofluorescein was studied under turnover conditions. At 4 degrees C the hydrolysis of ATP is slowed sufficiently to permit study of the effects of Na+, K+, and ATP on the steady-state intermediates. With Na+ and Mg2+ (Na-ATPase conditions), addition of ATP produces a 7% drop in signal that reverts back to the initial, high fluorescence after a steady state of several minutes. K-sensitive phosphoenzyme is formed under these conditions, indicating that the fluorescence signal during the steady state is associated with E2P. Under (Na,K)-ATPase conditions (Na+, K+, Mg2+), micromolar ATP produces a steady-state signal that is 25% lower than the initial fluorescence, with no detectable phosphoenzyme formed. This low-fluorescence intermediate, which is also formed by adding K+ to enzyme in the Na-ATPase steady state described above, resembles the state produced by adding K+ directly to enzyme under equilibrium conditions, i.e. E2K. The K0.5(K+) for the fluorescence decrease and for keeping the enzyme dephosphorylated are nearly identical, indicating that the fluorescence change accompanies K+-dependent dephosphorylation. High ATP increases the steady-state fluorescence during the (Na,K)-ATPase reaction; while oligomycin produces still another steady-state fluorescent intermediate. These last two intermediates may be associated with the formation of E2P and E1P, respectively.  相似文献   

8.
Kidney alkaline phosphatase is an enzyme which requires two types of metals for maximal activity: zinc, which is essential, and magnesium, which is stimulatory. The main features of the Mg2+ stimulation have been analyzed. The stimulation is pH-dependent and is observed mainly between pH 7.5 and 10.5. Mg2+ binding to native alkaline phosphatase is characterized by a dissociation constant of 50 muM at pH 8.5,25 degrees. Binding of Zn2+ is an athermic process. Both the rate constants of association, ka, and of dissociation, kd, have low values. Typical values are 7 M(-1) at pH 8.0, 25 degrees, for ka and 4.10(-4) S(-1) at pH 8.0, 25 degrees, for kd. The on and off processes have high activation energies of 29 kcal mol (-1). Mg2+ can be replaced at its specific site by Mn2+, Co2+, Ni2+, and Zn2+. Zinc binding to the Mg2+ site inhibits the native alkaline phosphatase. Mn2+, Co2+, and Ni2+ also bind to the Mg2+ site with a stimulatory effect which is nearly identic-al with that of Mg2+, Mn2+ is the stimulatory cation which binds most tightly to the Mg2+ site; the dissociation constant of the Mn2+ kidney phosphatase complex is 2 muM at pH 8.5. The stoichiometry of Mn2+ binding has been found to be 1 eq of Mn2+ per mol of dimeric kidney phosphatase. The native enzyme displays absolute half-site reactivity for Mn2+ binding. Mg2+ binding site and the substrate binding sites are distinct sites. The Mg2+ stimulation corresponds to an allosteric effect. Mg2+ binding to its specific sites does not affect substrate recognition, it selectively affects Vmax values. Quenching of the phosphoenzyme formed under steady state conditions with [32P]AMP as a substrate as well as stopped flow analysis of the catalyzed hydrolysis of 2,4-dinitrophenyl phosphate or p-nitrophenyl phosphate have shown that the two active sites of the native and of the Mg2+-stimulated enzyme are not equivalent. Stopped flow analysis indicated that one of the two active sites was phosphorylated very rapidly whereas the other one was phosphorylated much more slowly at pH 4.2. Half of the sites were shown to be reactive at pH 8.0. Quenching experiments have shown that only one of the two sites is phosphorylated at any instant; this result was confirmed by the stopped flow observation of a burst of only 1 mol of nitrophenol per mol of dimeric phosphatase in the pre-steady state hydrolysis of p-nitrophenyl phosphate. The half-of-the-sites reactivity observed for the native and for the Mg2+-stimulated enzyme indicates that the same type of complex, the monophosphorylated complex, accumulates under steady state conditions with both types of enzymes. Mg2+ binding to the native enzyme at pH 8.0 increases considerably the dephosphorylation rate of this monophosphorylated intermediate. A possible mechanism of Mg2+ stimulation is discussed.  相似文献   

9.
The irreversible thermal inactivation of the sugarcane leaf NADP(+)-malic enzyme was studied at 50 degrees C and pH 7.0 and 8.0. Depending on the preincubation conditions, thermal inactivation followed mono- or biphasic first-order kinetics. A two-step behavior in the irreversible denaturation process was found when protein concentration was sufficiently low. The protein concentration necessary to obtain monlphasic thermal inactivation kinetics was lower at pH 8.0 than at pH 7.0. The results suggest that biphasic inactivation kinetics are the consequence of the existence of two different oligomeric forms of the enzyme (dimer and tetramer), with the dimer being more stable in regards to thermal inactivation. The effects of the substrate and essential cofactors on the thermostability and equilibrium between the dimeric and tetrameric enzyme forms were also studied. Depending on the pH, NADP+, L-malate, and Mg2+ all had a protective effect on the stability of the dimeric and tetrameric species during thermal treatment. However, these ligands showed different effects on the aggregation state of the enzyme. NADP+ and L-malate induced dissociation, especially at pH 8.0, whereas Mg2+ induced aggregation of the protein. By studying the thermal inactivation kinetics at 50 degrees C and different pH values it was observed that the equilibrium between dimers and tetramers was dramatically affected in the range of pH 7.0-8.0. These results suggest that an amino acid residue(s) in the protein with an apparent pKa value of 7.7 needs to be deprotonated to stabilize aggregation of the enzyme to the tetrameric form.  相似文献   

10.
The pre-steady-state kinetics of phosphorylation of the Ca2+-ATPase by ATP was studied at 37 degrees C and in intact red cell membranes to approach physiological conditions. ATP and Ca2+ activate with K0.5 of 4.9 and 26.4 microM, respectively. Preincubation with Ca2+ did not change the K0.5 for ATP. Preincubation with ATP did not alter the initial velocity of phosphorylation suggesting that binding of ATP was not rate-limiting. Mg2+ added at the start of the reaction increased the initial rate of phosphorylation from 4 to 8 pmol/mg/s. With 30 microM Ca2+, the K0.5 for Mg2+ was 60 microM. Mg2+ and Ca2+ added together beforehand accelerated phosphorylation to 70 pmol/mg/s. Phosphorylation of calmodulin-bound membranes was the fastest (280 pmol/mg/s), and its time course showed a neat overshoot before steady state. The results suggest that either preincubation with Ca2+ plus Mg2+ or calmodulin accelerated phosphorylation shifting toward E1 the equilibrium between the E1 and E2 conformers of the enzyme. K+ had no effect on the initial rate of phosphorylation and lowered by 40% the steady-state level of phosphoenzyme in the absence of Mg2+. Phosphorylation is not rate-limiting for the overall reaction since its initial rate was always higher than ATPase activity. In the absence of K+, the turnover of the phosphoenzyme was 2000 min-1, which is close to the values for other transport ATPases.  相似文献   

11.
Role of the divalent metal cation in the pyruvate oxidase reaction   总被引:3,自引:0,他引:3  
Purified pyruvate oxidase requires a divalent metal cation for enzymatic activity. The function of the divalent metal cation was studied for unactivated, dodecyl sulfate-activated, and phosphatidylglycerol-activated oxidase. Assays performed in the presence of Mg2+, CA2+, Zn2+, Mn2+, Ba2+, Ni2+, Co2+, Cu2+, and Cr3+ in each of four different buffers, phosphate, 1,4-piperazinediethanesulfonic acid, imidazole, and citrate, indicate that any of these metal cations will fulfill the pyruvate oxidase requirement. Extensive steady state kinetics data were obtained with both Mg2+ and Mn2+. All the data are consistent with the proposition that the only role of the metal is to bind to the cofactor thiamin pyrophosphate (TPP) and that it is the Me2+-TPP complex which is the true cofactor. Values of the Mg2+ and Mn2+ dissociation constants with TPP were determined by EPR spectroscopy and these data were used to calculate the Michaelis constant for the Me2+-TPP complexes. The results show that the Michaelis constants for the Me2+-TPP complexes are independent of the metal cation in the complex. Fluorescence quenching experiments show that the Michaelis constant is equal to the dissociation constant of the Mn2+-TPP complex with the enzyme. It was also shown that Mn2+ will only bind to the enzyme in the presence of TPP and that one Mn2+ binds per subunit. Steady state kinetics experiments with Mn2+ were more complicated than those obtained with Mg2+ because of the formation of an abortive Mn2+-pyruvate complex. Both EPR and steady state kinetics data indicated complex formation with a dissociation constant of about 70 mM.  相似文献   

12.
The rate of phosphorylation of sodium and potassium ion-transport adenosine triphosphatase by 10 microM [gamma-32P]ATP was much slower with Ca2+ than with Mg2+ (0.13-10 mM) in the presence of 16 to 960 mM Na+ at 0 degrees C and pH 7.4. In the presence of a fixed concentration of Mg2+ or Ca2+, the rate became slower with increasing Na+ concentration. When the Na+ concentration was fixed, the rate became slower with decreasing divalent cation concentration. Sodium ions appear to antagonize the divalent cation in the phosphorylation to slow its rate. In the presence of 1 mM Ca2+ and 126 or 270 mM Na+, the rate was slow enough to permit the manual addition of a chasing solution at various times before the phosphorylation reached the steady state. Therefore, we studied the time-dependent change of the sensitivity to ADP or to K+ of the phosphoenzyme by a chase with unlabeled ATP containing ADP or K+ during the time range from the transient to the steady state of the phosphorylation. The ADP sensitivity decreased and the K+ sensitivity increased with the progress of the phosphorylation. With 270 mM Na+, the phosphoenzyme found at 1 s, when its amount was 5.5% of the maximum level, was virtually completely sensitive to ADP. Under these conditions, it was concluded that the form of the phosphoenzyme initially produced from the enzyme.ATP complex has ADP sensitivity and that the phosphoenzyme acquires K+ sensitivity later. The initially produced ADP-sensitive phosphoenzyme partially lost its normal instability and sensitivity upon adding a chelating agent, probably because of dissociation of a divalent cation from the phosphoenzyme.  相似文献   

13.
NADP-malic enzyme highly purified from sugarcane leaves exhibited hysteretic properties. This behavior resulted in a lag phase during activity measurement of the enzyme preincubated in the absence of substrates. The lag was inversely proportional to the protein concentration during preincubation, which suggests that changes in the aggregational state of the enzyme are responsible for hysteresis. The pH conditions as well as the presence of different compounds in the preincubation medium modified the hysteretic properties of the enzyme. Mg2+ eliminated the lag period and increased the enzyme activity by nearly 2-fold. NADP+, 3-phosphoglycerate, ATP and dithiothreitol shortened the lag phase. The substrate l-malate inhibited the enzyme by decreasing the steady state velocity and increasing the lag time in a concentration-dependent manner. NADPH, triose-phosphates and high ionic strength increased the lag phase. Results are consistent with the view that the level of different metabolites and the pH conditions at the chloroplast regulate the activity of NADP-malic enzyme in a coordinate and effective manner.Abbreviations Diamide azodicarboxylic acid bis(dimethylamide) - DHAP dihydroxyacetone-phosphate - DTT dithiothreitol - Ga3P glyceraldehyde-3-phosphate - NADP-ME NADP-dependent malic enzyme - PEP phosphoenolpyruvate - 3PGA 3-phosphoglycerate  相似文献   

14.
N Frankenberg  D W Heinz  D Jahn 《Biochemistry》1999,38(42):13968-13975
During tetrapyrrole biosynthesis the metalloenzyme porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of 5-aminolevulinic acid to form the pyrrole porphobilinogen. Pseudomonas aeruginosa PBGS was synthesized in Escherichia coli, and the enzyme was purified as a fusion protein with glutathione S-transferase (GST). After removal of GST, a molecular mass of 280 000 +/- 10 000 with a Stokes radius of 57 A was determined for native PBGS, indicating a homooctameric structure of the enzyme. Mg2+ stabilized the oligomeric state but was not essential for octamer formation. Alteration of N-terminal amino acids changed the oligomeric state and reduced the activity of the enzyme, revealing the importance of this region for oligomerization and activity. EDTA treatment severely inhibited enzymatic activity which could be completely restored by the addition of Mg2+ or Mn2+. At concentrations in the micromolar range Co2+, Zn2+, and Ni2+ partially restored EDTA-inhibited enzymatic activity while higher concentrations of Zn2+ inhibited the enzyme. Pb2+, Cd2+, and Hg2+ did not restore activity. A stimulatory effect of monovalent ions was observed. A Km of 0.33 mM for ALA and a maximal specific activity of 60 micromol h-1 mg-1 at the pH optimum of 8.6 in the presence of Mg2+ and K+ were found. pH-dependent kinetic studies were combined with protein modifications to determine the structural basis of two observed pKa values of approximately 7.9 (pKa1) and 9.5 (pKa2). These are postulated respectively as ionization of an active site lysine residue and of free substrate during catalysis. Some PBGS inhibitors were characterized. Finally, we succeeded in obtaining well-ordered crystals of P. aeruginosa PBGS complexed with the substrate analogue levulinic acid.  相似文献   

15.
The effects of glyoxylate plus oxaloacetate and of oxalomalate on the NADP-linked isocitrate dehydrogenase (threo-DS-isocitrate:NADP+ oxidoreductase (decarboxylating, EC 1.1.1.42) from pig heart from been studied with steady state methods as well as with stopped flow technique. When equimolar mixtures of glyoxylate and oxaloacetate were premixed for different lengths of time prior to addition to the assay mixture, the extent of inhibition increased with the premixing time. The results indicated that the inhibition by glyoxylate plus oxaloacetate is caused by a compound formed in a reversible interaction between the two components. Glyoxylate plus oxaloacetate and oxalomalate affected the enzyme in at least three different ways. They inhibited the enzyme in a reaction competitive with regard to the substrate isocitrate. This inhibition needed a certain time to be fully expressed. The time lag could be eliminated by premixing of the enzyme and inhibitor with NADP plus metal ion. Secondly, if the enzyme is premixed with NADP plus metal ions, a time lag occurs before the reaction rate approaches a constant value after initiation of the reaction with isocitrate. The inhibitors were found to enhance this effect of NADP plus metal ions on the enzyme. Thirdly, it has previously been shown that the enzyme can be activated by metal complexing agents. Glyoxylate plus oxaloacetate as well as oxalomalate are able to form complexes with metal ions and were found to cause an initial activation of the enzyme under certain assay conditions. The controversy regarding the mechanism of action of the above inhibitors on the enzyme is probably due to the fact that they affect the enzyme in several different ways.  相似文献   

16.
This study reports on the divalent metal ion specificity for phosphorylase kinase autophosphorylation and, in particular, provides a comparison between the efficacy of Mg2+ and Mn2+ in this role. As well as requiring Ca2+ plus divalent metal ion-ATP2- as substrate, both phosphorylase kinase autoactivation and phosphorylase conversion are additionally modulated by divalent cations. However, these reactions are affected differently by different ions. Phosphorylase kinase-catalyzed phosphorylase conversion is maximally enhanced by a 4- to 10-fold lower concentration of Mg2+ than is autocatalysis and, whereas both reactions are stimulated by Mg2+, autophosphorylation is activated by Mn2+, Co2+, and Ni2+ while phosphorylase a formation is inhibited. This difference may be due to an effect of free Mn2+ on phosphorylase rather than the inability of phosphorylase kinase to use MnATP as a substrate when catalyzing phosphorylase conversion since Mn2+, when added at a level which minimally decreases [MgATP], greatly inhibits phosphorylase phosphorylation. The interactions of Mn2+ with phosphorylase kinase are different from those of Mg2+. Not only are the effects of these ions on phosphorylase activation opposite, but they also provoke different patterns of subunit phosphorylation during phosphorylase kinase autocatalysis. With Mn2+, the time lag of phosphorylation of both the alpha and beta subunits of phosphorylase kinase in autocatalysis is diminished in comparison to what is observed with Mg2+, and the beta subunit is only phosphorylated to a maximum of 1 mol/mol of subunit. With both Mg2+ and Mn2+ the alpha subunit is phosphorylated to a level in excess of 3 mol/mol, a level similar to that obtained for beta subunit phosphorylation in the presence of Mg2+. The support of autophosphorylation by both Co2+ and Ni2+ has characteristics similar to those observed with Mn2+. Although Mn2+ stimulation of autophosphorylation occurs at levels much higher than normal physiological levels, the possible potential of phosphorylase kinase autophosphorylation as a control mechanism is illustrated by the 80- to 100-fold activation that occurs in the presence of Mn2+, a level far in excess of the enzyme activity change normally seen with covalent modification. Autophosphorylation of phosphorylase kinase demonstrates a Km for Mg X ATP2- of 27.7 microM and a Ka for Mg2+ of 3.1 mM. The reaction mechanism of autophosphorylation is intramolecular. This latter observation may indicate that phosphorylase kinase autocatalysis could be of potential physiological relevance and could occur with equal facility in cells containing either constitutively high or low levels of this enzyme.  相似文献   

17.
Membrane phosphorylation and nucleoside triphosphatase activity of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle were studied using ATP and ITP as substrates. The Ca2+ concentration was varied over a range large enough to saturate either the high affinity Ca2+-binding site or both high and low affinity binding sites. In intact vesicles, which are able to accumulate Ca2+, the steady state level of enzyme phosphorylated by either ATP or ITP is already high in 0.02 mM Ca2+ and does not vary as the Ca2+ concentration is increased to 10 mM. Essentially the same pattern of membrane phosphorylation by ATP is observed when leaky vesicles, which are unable to accumulate Ca2+, are used. However, for leaky vesicles, when ITP is used as substrate, the phosphoenzyme level increases 3- to 4-fold when the Ca2+ concentration is raised from 0.02 to 20 mM. When Mg2+ is omitted from the assay medum, the degree of membrane phosphorylation by ATP varies with Ca2+ in the same way as when ITP is used in the presence of Mg2+. Membrane phosphorylation of leaky vesicles by either ATP or ITP is observed in the absence of added Mg2+. When these vesicles are incubated in media containing ITP and 0.1 mM Ca2+, addition of Mg2+ up to 10 mM simultaneously decreases the steady state level of phosphoenzyme and increases the rate of ITP hydrolysis. When ATP is used, the addition of 10 mM Mg2+ increases both the steady state level of phosphoenzyme and the rate of ATP hydrolysis. When the Ca2+ concentration is raised to 10 or 20 mM, the degree of membrane phosphorylation by either ATP or ITP is maximal even in the absence of added Mg2+ and does not vary with the addition of 10 mM Mg2+. In these conditions the ATPase and ITPase activities are activated by Mg2+, although not to the level observed in 0.1 mM Ca2+. An excess of Mg2+ inhibits both the rate of hydrolysis and membrane phosphorylation by either ATP or ITP.  相似文献   

18.
Manganese ion, like Mg2+, has been found to produce high biosynthetic activity of the unadenylylated form of glutamine synthetase obtained from Mycobacterium smegmatis, and the activity with each of these cations was decreased by the adenylylation of the enzyme. Further, the gamma-glutamyltransferase reaction was catalyzed in the presence of either Mn2+, Mg2+, or Co2+ with both unadenylylated and adenylylated enzyme; however, each of these divalent cation-dependent activities was also decreased by one order of magnitude by adenylylation of the enzyme. From studies of UV-difference spectra, it was found that the ability of M. smegmatis glutamine synthetase to assume a number of distinctly different configurations was the result of the varied response of the enzyme to different cations. When either Mn2+, Mg2+, Ca2+, or Co2+ was added to the relaxed (divalent cation-free) enzyme at saturated concentration, each produced a similar UV-difference spectrum of the enzyme, indicating that the conformational states induced by these cations are similar with respect to the polarity of the microenvironment surrounding the tyrosyl and tryptophanyl groups of the enzyme. The binding of Cd2+, Ni2+, or Zn2+ to the relaxed enzyme each produced a different shift in the UV-absorption spectrum of the enzyme, indicating different conformational states. The kinetics of the spectral change that occurred upon addition of Mn2+, Mg2+, or Co2+ to a relaxed enzyme preparation were determined. The first-order rate constants for the decrease in relaxed enzyme with Mn2+ and Mg2+ were 0.604 min-1 and 0.399 min-1, respectively, at 25 degrees C, pH 7.4. The spectral change with Co2+ was completed within the time of mixing (less than 4 s). For these three metal ions, the total spectral change as well as the time course of the change were the same for both the unadenylylated enzyme and the partially adenylylated enzyme. However, Hill coefficients obtained from spectrophotometric titration data for both Mn2+ and Mg2+ were decreased with adenylylated enzyme to compared with unadenylylated enzyme. These results suggest that covalently bound AMP on each subunit may be involved in subunit interactions within the dodecamer. Circular dichroism measurements also indicated that the various structural changes of the M. smegmatis glutamine synthetase were produced by the binding of the divalent cations.  相似文献   

19.
A synergistic activation of phosphorylase kinase by Ca2+ plus Mg2+ was found to be the primary cause of the hysteresis, or lag, in the phosphorylase kinase reaction. Preincubation of the enzyme for short times with Ca2+ plus Mg2+ resulted in an approximately 7-fold increase in the kinase activity in subsequent assays with phosphorylase b or phosphorylase kinase as substrates, whereas preincubation with each metal ion by itself had no effect. Maximal activation through preincubation with Ca2+ plus Mg2+ occurred in 1 min 45 s and was readily reversed by chelation of both metal ions. As a result of the activation, the progress curve of phosphorylase b conversion at pH 6.8 was found to be nearly linear. Activation by Ca2+ plus Mg2+ was not apparent when subsequent assays were carried out at pH 8.2, or when previously autophosphorylated enzyme was used. Furthermore, the synergistic activation was found to occur significantly slower and/or to decrease in the presence of ATP, phosphorylase b, beta-glycerophosphate, and inorganic phosphate. How the synergistic activation by Ca2+ plus Mg2+ relates to autophosphorylation and the lag in the phosphorylase kinase reaction is discussed.  相似文献   

20.
Calcineurin purified from bovine brain was found to be active towards beta-naphthyl phosphate greater than p-nitrophenyl phosphate greater than alpha-naphthyl phosphate much greater than phosphotyrosine. In its native state, calcineurin shows little activity. It requires the synergistic action of Ca2+, calmodulin, and Mg2+ for maximum activation. Ca2+ and Ca2+ X calmodulin exert their activating effects by transforming the enzyme into a potentially active form which requires Mg2+ to express the full activity. Ni2+, Mn2+, and Co2+, but not Ca2+ or Zn2+, can substitute for Mg2+. The pH optimum, and the Vm and Km values of the phosphatase reaction are characteristics of the divalent cation cofactor. Ca2+ plus calmodulin increases the Vm in the presence of a given divalent cation, but has little effect on the Km for p-nitrophenyl phosphate. The activating effects of Mg2+ are different from those of the transition metal ions in terms of effects on Km, Vm, pH optimum of the phosphatase reaction and their affinity for calcineurin. Based on the Vm values determined in their respective optimum conditions, the order of effectiveness is: Mg2+ greater than or equal to Ni2+ greater than Mn2+ much greater than Co2+. The catalytic properties of calcineurin are markedly similar to those of p-nitrophenyl phosphatase activity associated with protein phosphatase 3C and with its catalytic subunit of Mr = 35,000, suggesting that there are common features in the catalytic sites of these two different classes of phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号