首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three impeller-sparger configurations were used to evaluate the effect of different hydrodynamic conditions over fungal growth in rheologically complex cultures of Trichoderma harzianum using castor oil as sole carbon source. Three spargers (ring, sintered and 5-orifice) in combination with a turbine impeller system "TIS" (two Rushton turbines) or a hybrid impeller system "HIS" (Rushton turbine and a marine propeller as lower and upper impellers) were used. Their performance was assessed in terms of the response towards disturbance (PID oxygen control settings) and oxygen mass transfer (kLa). To avoid oxygen limitations, all cultures were controlled at 10% DOT by gas blending. Top to bottom mixing, and hence bulk blending, was improved when the - axial flow - HIS was used, ensuring phase interaction and substrate (oil) circulation. The 5-orifice sparger in combination with the TIS configuration yielded the longest lag phase and lowest kLa due to poor bulk blending and to the low gas-liquid interfacial area developed. The highest kLa was achieved with the sintered sparger-HIS probably due to considerable interfacial bubble area enhancement. However, growth limitation occurred as consequence of poor substrate availability as a stable air-oil emulsion was formed at the top of the tank. The best compromise between bulk blending (phase interaction), oxygen transfer (kLa) and fungal growth (growth rate) was achieved with the ring sparger-HIS configuration.  相似文献   

2.
The oxygen transfer properties of a novel, centrifugal, packed-bed reactor (CPBR) during viscous xanthan fermentation were determined with respect to the effects of the arrangement of the centrifugal, packed bed (CPB) and the recirculation loop (RL). Characterized by the maximum volumetric transfer coefficient (kLa) in xanthan broth, the aeration efficiency of CPBR was compared to those in stirred-tank reactors (STR) equipped with disc turbines (DT) or marine propellers (MP), and to that in a water-in-oil emulsion (WIO). As expected, STR-WIO showed the highest kLa (0.038 s-1 at 2%) among all systems studied due to reduced broth viscosity; however, practical difficulties exist in product recovery. It was found that, at 3.5% xanthan the kLa in CPBR (0.018 s-1) was higher than that of STR (0.005 s-1) and close to that of STR-WIO (0.020 s-1), indicating improved oxygen transfer at such a xanthan concentration. The exterior baffles along the rotating fibrous matrix offer additional agitation in the viscous broth. A gas-continuous arrangement, in which the CPB was kept above the broth, was able to elevate kLa to 0.023 s-1, higher than that of STR-WIO. The external RL operated by a peristaltic pump was found to play an important role in CPBR aeration by providing better gas-liquid contact. With the improved oxygen transfer efficiency in CPBR at high xanthan concentrations, the CPBR system is practically the preferred system for xanthan fermentation. The characteristic roles of CPB arrangement and the RL should be considered primarily during scale-up operation.  相似文献   

3.
The effect of overall oxygen mass transfer coefficient (kLa) on the conversion of xylose to xylitol by Candida guilliermondii FTI 20037 was investigated in batch experiments. Rice straw hemicellulose hydrolysate obtained by acid hydrolysis was employed as a xylose-rich medium. The results showed that this bioconversion strongly depended on the aeration rate. The maximum volumetric productivity (0.52 g/l hу) and the highest xylitol yield (0.73 g/g) were achieved at an overall oxygen mass transfer coefficient of 15 hу. Under these conditions 80% efficiency in relation to theoretical yield was attained.  相似文献   

4.
The DO-controlled glucose limited fed-batch technique was investigated in an E. coli process for production of a recombinant protein. The kLac* value (oxygen transfer rate at zero oxygen concentration) was calculated from on-line gas analysis data during the process. In the investigated processes with induced production of recombinant protein, the kLac* value decreased drastically several hours after induction. The reason for the decrease was found in increasing concentrations of DNA in the medium and increased viscosity due to cell lysis. The consequences of such a dramatic decrease in the volumetric oxygen transfer coefficient on the glucose feed and specific rates are described in computer simulations and experimental data.  相似文献   

5.
The oxygen mass transfer coefficient often serves to compare the efficiency of bioreactors and their mixing devices as well as being an important scale-up factor. In submerged fermentation, four methods are available to estimate the overall oxygen mass transfer coefficient (KLa): the dynamic method, the stationary method based on a previous determination of the oxygen uptake rate (QO2X), the gaseous oxygen balance and the carbon dioxide balance. Each method provides a distinct estimation of the value of KLa. Data reconciliation was used to obtain a more probable value of KLa during the production of Saccharomyces cerevisiae, performed in 22.5-l fed-batch bioreactor. The estimate of KLa is obtained by minimising an objective function that includes measurement terms and oxygen conservation models, each being weighted according to their level of confidence. Weighting factors of measurement terms were taken as their respective inverse variance whereas weighting factors of oxygen conservation models were obtained using Monte Carlo simulations. Results show that more coherent and precise estimations of KLa are obtained.  相似文献   

6.
Summary A twin bubble column was used to measure the kLa values for oxygen in model and cultivation media using the steady state method described previously (Adler et al. 1980). Desmophen and soy oil were used as antifoam agents together with model and/or cultivation media for Chaetomium cellulotyticum, Trichoderma reesei, Hansenula polymorpha, Saccharomyces cerevisiae and Escherichia coli. The bubble coalescence behavior is mainly influenced by antifoam agents and somewhat by protein and alcohol additives. In the range investigated (0.01 to 0.1%.), the kLa values are not influenced by the Desmophen concentration and only slighthly by the soy oil concentration (0.5 to 1.5%.). The coalescence behaviour was characterized by the ratio mcorr=(kLa)corr/(kLa)ref. A nutrient salt solution with Desmophen was used as a reference. The kLa measured in the investigated media were corrected by considering the differences in kLa's in the investigated and reference media. These mcorr values can directly be used for bubble columns close to the optimum aeration rate.Symbols a Specific gas/liquid interfacial area - c Concentration - kL Mass transfer coefficient - kLa Volumetric mass transfer coefficient - WSG Superficial gas velocity - EG Relative gas hold-up  相似文献   

7.
A general relationship for prediction of the volumetric oxygen transfer coefficient (kLa) in a tower bioreactor utilizing immobilized Penicillium chrysogenum as function of air superficial velocity, suspension rheological parameters and liquid physical properties is proposed in this study. The relationship was applied to three different systems and a good agreement between the calculated values and the experimental data was obtained.  相似文献   

8.
A torque meter has been developed for determining the power consumption in a bench stirred tank. The device has been bonded in the stirrer shaft inside a commercial bench fermentor, in order to avoid frictional losses in the mechanical seal. Power consumption measurements in ungassed and gassed systems were obtained at different agitation and aeration conditions, for Newtonian and non-Newtonian fluids. Also, a "simple modified sulfite method" for volumetric oxygen transfer coefficient (kLa) determination was developed and the experimental data were correlated with the gassed power (Pg) by using well-known correlations presented in the literature.  相似文献   

9.
Summary In the presence of protein, Hansenula polymorpha cultivation medium exhibits a maximum volumetric mass transfer coefficient, kLa, as function of the employed antifoam agents (soy oil and Desmophen 3600). With diminishing superficial gas velocity this maximum disappeas.Symbols EG Relative gas holdup - kLa Volumetric mass transfer coefficient (s–1) - wSL Superficial liquid velocity (cm s–1) - wSG Superficial gas velocity (cm s–1)  相似文献   

10.
The study of the oxygen transfer rate (O.T.R) in reactors designed for cell cultivation and enzyme reaction is a difficult task. In this work a bio-reactor for acetic acid fermentation purposes is studied by using the static gassing out method for KLa evaluation. Results obtained prove that KLa shows linear dependence versus operation temperature.  相似文献   

11.
This paper is concerned with the potential use of a reciprocating plate bioreactor (RPB) for suspended plant cell cultures. The agitation mechanism of the RPB system, a plate stack, was first evaluated in pure water and in pseudocells medium of 20, 40 and 60% of PCV. As the pseudocell concentration increases, the oxygen mass transfer coefficient, KLa, significantly decreases. Correlations were established for each plate stack and concentration with good prediction of KLa. Three fermentations were performed with Vitis vinifera cells, two in the RPB system and one in shake flasks. Shake flask cultures showed better performance whereas the first fermentation performed with the RPB showed the lowest performance. The lower growth observed was attributed to the operating conditions for aeration and the dissolved oxygen control strategy. CO2 stripping in the initial portion of the fermentation led to lower biomass growth. The second fermentation, with more appropriate operating conditions, appears to follow the trend of shake flask cultures but was terminated after 5 days due to contamination. The RPB has the potential to be used for suspended plant cell cultures but significant research needs to be performed to find optimal operating conditions but, more importantly, to make appropriate modifications to ensure the sterility of the bioreactor over long time periods.  相似文献   

12.
Summary Hansenula polymorpha was cultured for long periods in 254 cm high single and three-stage countercurrent tower loop reactors 20 cm in diameter using ethanol as a substrate in the absence and presence of antifoam agents (Desmophen 3600 and/or soy oil). In the absence of antifoam agents in the three-stage column, much higher volumetric mass transfer coefficients were attained than in the corresponding single-stage column. The cell productivity in the former, however, was only slightly higher than in the single-stage column due to considerable enrichment of the cells in the foam and nonuniform cell concentration distribution in the three-stage column. In the presence of antifoam agents the three-stage column has a higher cell productivity, OTR, kL a and a lower specific energy requirement with regard to the absorbed oxygen and/or produced cell mass than the single stage column. The reactor performance is especially high if the bubbling layer height is reduced to 20 cm. Soy oil has considerably less foam eliminating property than Desmophen. Since the soy oil is metabolized by the yeast, large amounts are needed to operate these reactors.  相似文献   

13.
In this study, the removal of nitrate (NO3m) ions from aqueous streams with liquid membrane technique has been investigated. Among the other parameters (temperature, pH, acceptor phase type and medium concentration), the stirring speed was chosen as process parameter. From the experimental results, it has been determined that the reaction was diffusion controlled. The transport efficiency of nitrate ions increased with increasing stirring speed. The membrane entrance and exit rate constants (k1d, k2m and k2a respectively) were linearly dependent on the stirring speed ratios of 100 to 250 rpm. Coupled transport of nitrate ions through a liquid membrane in 85% n-hexane-15% tricloromethane as diluent, containing tetraoctyl ammonium chloride (TOACl) as a carrier was examined at various stirring speeds. Membrane entrance (k1d) and exit rates (k2m and k2a) increase with increasing the stirring speeds. The diffusion of the nitrate ion-carrier complex through the narrow stagnant layers was found to be rate determining step. The membrane was stable during the transport experiments. There is no leakage of carrier or nitrate ion-carrier complex to both aqueous phases and also, no supplementary water penetration into the membrane. This favours interfacial reaction of nitrate ion and carrier.  相似文献   

14.
The degradation of anthracene by laccase from Trametes versicolor in enzymatic reactors was evaluated. The use of a surfactant (Triton X-100) at concentration above critical micelle concentration (CMC) enhanced anthracene solubility and facilitated its degradation. Moreover, Triton exerted a beneficial effect on the laccase stability and protected it from the oxidative action of the mediator 1-hydroxybenzotriazole (HBT). In a further stage, the combined configuration of a two phase partitioning bioreactor (TPPB) operating with silicone oil as an immiscible solvent and the surfactant achieved the degradation of anthracene at higher conversion rate: 16 μmol/LRh. Furthermore, a model for anthracene degradation by laccase-mediator system was developed. The first order kinetic constant (k) and the overall mass transfer coefficient (KLa) were estimated by using the method of least squares. The increased KLa value obtained, 788.1 h?1, proved that Triton also improved mass transfer. Anthracene concentration in aqueous phase was close to that corresponding to equilibrium state suggesting that mass transfer mechanism did not limit the global process. The kinetic constant, which is expected to depend on the initial concentration of enzyme, resulted in 52.2 h?1. Enzyme inactivation occurred in two stages and could be modeled by using a three parameter biexponential model. The possibility of reusing silicone oil to dissolve more anthracene was proven in three consequent cycles with high percentages of anthracene removal.  相似文献   

15.
The production of Cephalosporin-C (CPC) a secondary metabolite, using a mold Acremonium chrysogenum was studied in a lab scale Internal loop air lift reactor. Cephalosporin-C production process is a highly aerobic fermentation process. Volumetric gas–liquid mass transfer coefficient (kLa) and viscosity (η) were evaluated, during the growth and production phases of the microbial physiology. An attempt has been made to correlate the broth viscosity, η and volumetric oxygen transfer coefficient, kLa during the Cephalosporin-C production in an air lift reactor. The impact of biomass concentration and mycelial morphology on broth viscosity has been also evaluated. The broth exhibits a typical non-Newtonian fermentation broth. Rheology parameters like consistency index and fluidity index are also studied.  相似文献   

16.
The effects of aliphatic hydrocarbons (n-hexadecane andn-dodecane) on the volumetric oxygen mass transfer coefficient (k L a) were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2 vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliablek L a measurements. Addition of 1% (v/v)n-hexadecane orn-dodecane increased thek l a 1.55-and 1.33-fold, respectively, compared to the control (superficial velocity: 25.8×10−3 m/s, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial areaa and the liquid film mass transfer coefficientk L suggests that the observedk L a increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v)n-hexadecane orn-dodecane to analogous setups using CSTRs led to ak L a increase by a factor of 1.68 and 1.36, respectively (superficial velocity: 2.1×10−3 m/s, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.  相似文献   

17.
Oxygen and substrate supply have always been considered physical constraints for the performance and operation of two-phase partitioning bioreactors (TPPB), widely used for the degradation of hydrophobic substrates. In this regard, the potential advantages of static mixers in upgrading the oxygen transfer and liquid-liquid dispersions in TPPB have been highlighted. In the present paper, the concomitant influence of static mixers on the gas-liquid mass transfer coefficient k L a and on substrate bioavailability was examined in TPPB. The static method based on conventional forms was developed to estimate the oxygen volumetric mass transfer coefficient. Over a broad range of liquid and air flow rates, the presence of static mixers was found to significantly enhance k L a relative to a mixer-free mode of operation. For identical conditions, static mixers improved the k L a threefold. In the presence of external aeration supply, the boost in the k L a was associated with an increase of 16% in the phenanthrene biodegradation rate due to bubble break up accomplished by the static mixers. On the other hand, static mixers were efficient in enhancing substrate bioavailability by improving the liquid-liquid interfacial area. This effect was reflected by a threefold increase in the degradation rate in the bioreactors with no external supply of air when equipped with static mixers.  相似文献   

18.
Summary The effect of soybean oil on the volumetric oxygen transfer coefficient during the cultivation ofAerobacter aerogenes cells is presented. For our aeration-agitation conditions (0.278 vvm and 500 rpm), it has been demonstrated that the use 19% (v/v) of soybean oil enabled a 1.85-fold increase of thek l a coefficient (calculated on a per liter aqueous phase basis). For smaller volumetric oil fractions,k L a increased linearly with the oil loading. Because of the oxygen-vector properties of soybean oil, this oil is able to significantly increase thek L a of a bioreactor.Nomenclature C*, C saturation and actual dissolved oxygen concentrations respectively (g/m3) - KLa volumetric oxygen transfer coefficient (h–1) - KLainitial k La measured before the oil addition (h–1) - MO2 molar mass of oxygen (dalton) - N oxygen transfer rate (g/m3. h) - PO2. PN2 partial pressures ofO 2 andN 2 in the gas (atm) - PH2OT partial pressure of water in air at the temperatureT (atm) - PT total pressure (atm) - Q0 volumetric flow rate of outlet air before seeding (m3/h) - Sp spreading coefficient (dynes/cm) - T absolute temperature of outlet gas (K) - Vi volume of the liquidi in the fermentor (m3) - VM molar volume at 273 K and 1 atm (m3/mole) - ij interfacial tension betweeni andj componants (dynes/cm) - v volumetric fraction of the oil (v/v) - G gas - O oil - W water - i inlet - o outlet  相似文献   

19.
The multiple steady states in an isothermal, constant-density CSTR involving two-substrates, enzyme- catalyzed reactions is determined by a zero eigenvalue analysis. The hysteresis and bistability occurs for a certain range of the rate constant of product formation from a ternary complex, kES1S2MP+E. A two-parameter (kES1S2MP+E, k0MS1) bifurcation diagram for several different values of flow rate kS1̂ is also presented. It shows that, to maintain the existence of the steady state multiplicity under a fixed flow rate, the larger the rate constant kES1S2MP+E is, the larger the feed concentration of a substrate is required and the wider the range of that exists. To maintain the existence of the steady state multiplicity for a lower flow rate, it is required to reduce the feed concentration of substrates.  相似文献   

20.
Summary Experimental studies on the effect of antifoam agents on the performance of bubble columns with non-Newtonian fluids have been conducted. It is found that the gas hold-up and volumetric mass transfer coefficient in the case of water were reduced due to the addition of antifoam agents. It was found that this decrease in volumetric mass trasfer coefficient is substantial but in the aqueous solutions of polymers the effect becomes weaker as the concentration of polymers becomes higher. When the concentration of polymers became higher than a certain value, the volumetric mass transfer coefficient in the aqueous solutions of polymers with antifoam agents was higher than that without antifoam agents.Nomenclature a Specific surface area, 1/m - D c Column diameter, m - d max Diameter of the largest bubble stable against breakup, m - d min Diameter of the smallest bubble stable against coalescence, m - g Gravitational acceleration, m/s2 - H l Clear liquid height, m - h Rupture thickness of the liquid film, m - K Consistency index in a power-law model, Pa·s n - k l Liquid-phase mass transfer coefficient, m/s - n Flow index in a power-law model - u sg Superficial gas velocity, m/s Greek letters Shear rate, 1/s - Gas hold-up - Energy dissipation per unit mass, m2/s3 - Viscosity, Pa·s - p Density, kg/m3 - Surface tension, N/m - Shear stress-Pa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号