首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the phenotypes of cytotoxic cells in channel catfish, clonal alloantigen-dependent leukocyte lines were established from mixed leukocyte cultures. Each clone was analyzed for expression of TCR alpha and beta genes by RT-PCR and for target cell specificity by 51Cr-release assay. Based on the above criteria, the following five different cell types were identified among the 19 clones analyzed: 1) TCR alphabeta+ allospecific cytotoxic cells, 2) TCR alphabeta+ nonspecific cytotoxic cells, 3) allospecific TCR alphabeta+ noncytotoxic cells, 4) TCR alphabeta- nonspecific cytotoxic cells, and 5) TCR alphabeta- allospecific cytotoxic cells. The demonstration of cloned, TCR alphabeta+, allospecific cytotoxic effectors provides the strongest evidence to date for the existence of cytotoxic T cells in fish.  相似文献   

2.
TCR J alpha genes span a distance of approximately 65 kb on mouse chromosome 14. Due to the existence of 50 to 100 discrete J genes, a potential for great diversity exists within the V-J-C alpha gene products and within the ultimate repertoire of alpha beta TCR. We have prepared hybridomas from an in vitro system that supports T cell differentiation among bone marrow cells. We have examined the J alpha genes among these cells and categorized rearrangements according to their location within the J alpha locus. It was found that alpha rearrangements were always present among the hybridomas bearing beta gene rearrangements. When two bone marrow-derived alpha-bearing chromosomes could be demonstrated in these hybridomas, both were always rearranged and rearrangements on homologous chromosomes were shown to reside in similar regions of the J alpha locus. Most surprisingly, when hybridomas were categorized by the culture from which they derived, cells from the same culture (designated as a set) demonstrated a skewing of alpha rearrangements to restricted segments of J alpha genes. In one hybridoma, rearrangements on homologous chromosomes involved J alpha genes that were either identical or situated within a 1-kb segment of DNA. The skewing within sets could not be due to clonal identity between hybridomas as the beta and gamma rearrangements in all hybridomas were different. Results suggested that skewing of J alpha gene rearrangements occurred during the course of T cell development in vitro. Should the same situation occur in vivo, the number of distinct TCR J alpha sequences available for expression in early development may be far less than that predicted by gene number alone.  相似文献   

3.
4.
Mammalian TCR delta genes are located in the midst of the TCR alpha gene locus. In the chicken, one large V delta gene family, two D delta gene segments, two J delta gene segments, and one C delta gene have been identified. The TCR delta genes were deleted on both alleles in alpha beta T cell lines, thereby indicating conservation of the combined TCR alpha delta locus in birds. V alpha and V delta gene segments were found to rearrange with one, both or neither of the D delta segments and either of the two J delta segments. Exonuclease activity, P-addition, and N-addition during VDJ delta rearrangement contributed to TCR delta repertoire diversification in the first embryonic wave of T cells. An unbiased V delta 1 repertoire was observed at all ages, but an acquired J delta 1 usage bias occurred in the TCR delta repertoire. The unrestricted combinatorial diversity of relatively complex TCR gamma and delta loci may contribute to the remarkable abundance of gamma delta T cells in this avian representative.  相似文献   

5.
We sequenced a total of 189 independent rearrangements in which theVB7.1 element is associated withCB1 (99 clones) orCB2 (90 clones) isotypes of the T-cell receptor (TCR) β chain in the Mexican axolotl. Three stages of development were analyzed: 2.5 months, 10 months, and 25 months. ThreeJB1 segments were associated with theVB-CB1 rearrangements and sixJB2 segments withVB-CB2. As in other vertebrates, some amino acid positions were conserved in all Jβs (e. g., Phe-108, Gly-109, Gly-111, Thr-112, and Val-116). Two 11 nucleotidesDB-like sequences, differed by one (A or T) central residue and could be productively read in the three putative reading frames. Most of theDB1 andJB1 segments were in theVB-CB1 clones, and most of theDB2 andJB2 segments were in theVB-CB2 clones, suggesting that theTCRB locus is organized into independentDB-JB-CB clusters that used the same collection ofVB segments. About 40% of the β-chainVDJ junctions in 2.5-month-old larvae hadN nucleotides, compared with about 73% in 10–25-month old animals. The β-chainVDJ junctions had about 30% of defective rearrangements at all stages of development, which could be due to the slow rate of cell division in the axolotl lymphoid organs, and the large genome in this urodele. Many of the axolotl CDRβ3 sequences deduced for in frameVDJ rearrangements are the same in animals of different origins. Such redundancy could be a statistical effect due to the small number of thymocytes in the developing axolotl, rather than to some bias due to junctional preferences.  相似文献   

6.
Bulk populations and 39 hybridomas from splenic Con A cultures were analyzed for rearrangements among TCR genes: alpha, beta, gamma, and delta. Patterns were categorized to reveal general rules governing gene rearrangement within the activated adult peripheral population. Many patterns of gene rearrangement were consistent with previous studies of T cell lines. Additional points of interest were the following: 1) A large proportion of Con A-stimulated splenic cells bore no TCR gene rearrangements. 2) One splenic hybridoma exhibited an unusual gene pattern, with rearrangements, at alpha and beta, but not J gamma 1 or J gamma 2 loci. 3) Multiple gamma rearrangements were noted other than V1.2-J2 and V2-J1. 4) One hybridoma exhibited TCR gene rearrangements typical of day 14 to 15 fetal thymocytes, as well as rearrangements at immunoglobulin gene loci. 5) Among hybridomas with J alpha rearrangements, homologous chromosomes exhibited rearrangements at similar positions along the J alpha locus.  相似文献   

7.
Channel catfish, Ictalurus punctatus, T cell receptors (TCR) γ and δ were identified by mining of expressed sequence tag databases, and full-length sequences were obtained by 5′-RACE and RT-PCR protocols. cDNAs for each of these TCR chains encode typical variable (V), diversity (D), joining (J), and constant (C) regions. Three TCRγ V families, seven TCRγ J sequences, and three TCRγ C sequences were identified from sequencing of cDNA. Primer walking on bacterial artificial chromosomes (BACs) confirmed that the TRG locus contained seven TRGJ segments and indicated that the locus consists of (Vγ3-Jγ6-Cγ2)–(Vγ1n-Jγ7-Cγ3)–(Vγ2-Jγ5-Jγ4-Jγ3-Jγ2-Jγ1-Cγ1). In comparison for TCRδ, two V families, four TCRδ D sequences, one TCRδ J sequence, and one TCRδ C sequence were identified by cDNA sequencing. Importantly, the finding that some catfish TCRδ cDNAs contain TCR Vα-D-Jδ rearrangements and some TCRα cDNAs contain Vδ-Jα rearrangements strongly implies that the catfish TRA and TRD loci are linked. Finally, primer walking on BACs and Southern blotting suggest that catfish have four TRDD gene segments and a single TRDJ and TRDC gene. As in most vertebrates, all three reading frames of each of the catfish TRDD segments can be used in functional rearrangements, and more than one TRDD segment can be used in a single rearrangement. As expected, catfish TCRδ CDR3 regions are longer and more diverse than TCRγ CDR3 regions, and as a group they utilize more nucleotide additions and contain more nucleotide deletions than catfish TCRγ rearrangements.  相似文献   

8.
Rearrangement of germ-line genes coding for T and B cell antigen receptor molecules is an early event in lymphoid development which eventually leads to the generation of clonal diversity in receptor-positive lymphocytes. Three T cell-associated rearranging genes have been described. Two, T alpha and T beta, code for the two polypeptide chains that form the T cell receptor heterodimer. The function of the third gene, the gamma-gene (T gamma), is not known. To learn more about the behavior of T gamma during lymphoid ontogeny, we compared rearrangement of T gamma and T beta genes in leukemic cells arrested at varied stages of lymphoid and myeloid development. We analyzed 38 fresh cell lines and 15 established cell lines from a total of 53 leukemic patients. Cells were immunophenotyped with a panel of monoclonal antibodies recognizing T-, B-, or myeloid-associated surface markers. Sixteen T-lineage cases were studied; 15 displayed both T beta and T gamma rearrangements. The exception (germ-line for T beta and T gamma) was an immature CD2(T11)+, CD3(T3)-, CD7(3A1)+, CD1(T6)+, CD5(T101)+ phenotype. Fourteen non-T non-B leukemias were analyzed; eight were germ-line for both T beta and T gamma, four had rearrangements involving both T beta and T gamma, and two were germ-line for T beta and rearranged to T gamma. Four cases with acute biphenotypic leukemia were studied; two had rearrangements of T beta and T gamma, and two were germ-line for both genes. Cells from nonlymphocytic leukemias were studied in 19 cases. All were found to be germ-line for both T beta and T gamma. Fifty-one of 53 genomic DNA samples were concordant for T gamma and T beta rearrangement. These results indicate that rearrangement of T gamma can occur in leukemic cells of B cell as well as T cell precursor origin, as has been reported previously for T beta.  相似文献   

9.
T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell.  相似文献   

10.
T Boehm  T H Rabbitts 《FASEB journal》1989,3(12):2344-2359
T cells express either of the two forms of antigen-specific receptors, the alpha/beta and gamma/delta heterodimers. Their structure closely resembles that of immunoglobulins, and the variable part of the receptor molecule is created by somatic assembly of variable, diversity, and joining regions. The genetic structure of T cell receptor (TCR) genes and their rearrangement in T cell development have been elucidated in great detail in recent years. The human genes for the gamma and beta subunits are located on the short and long arms of chromosome 7, respectively, whereas the delta- and alpha-chain genes are located in tandem on the centromeric half of the long arm of chromosome 14. Expression of either alpha/beta or gamma/delta TCR complexes on T cells in the developing thymus is likely to proceed in an ordered fashion and results in the appearance of distinct T cell subpopulations. The process of DNA rearrangements required for the generation of functional variable region genes also predisposes lymphoid cells to aberrant DNA rearrangements, which can be detected as chromosomal abnormalities such as translocations and inversions. Molecular analysis of such aberrant rearrangements has shown that rearranging loci are fused to loci unrelated to antigen receptor genes. Furthermore, the breakpoint structures represent nonproductive intermediates in the hierarchy of physiological rearrangements. Accordingly, T cell tumors arising early in T cell development often carry chromosomal abnormalities involving the delta-chain locus, whereas tumors generated later in T cell development tend to show aberrations in the alpha-chain gene. This pattern seems to reflect the stage-specific accessibility of TCR loci for rearrangement by the recombinase machinery. This enzyme is guided by specific recombination signals that can sometimes also be found at the site of breakage on the participating locus in chromosomal abnormalities. Although some features of the mechanism of aberrant rearrangements are known, their biological consequences are less well understood. However, molecular analysis of the mechanism of chromosomal aberrations in T cell tumors suggests that their biological consequences may vary. Firm evidence for the pathogenic significance is missing for most of these lesions. This provides a challenge to molecular immunology to determine how chromosomal abnormalities are involved in tumor pathogenesis.  相似文献   

11.
12.
The antigen specific receptor of T cells (TCR) is composed of alpha and beta chains and is normally present on the T cell surface complexed with the components which make up T3. In the case of beta chain, multiple somatic DNA rearrangements bring together V beta (variable), D beta (diversity) and J beta (joining) gene segments before a mature messenger RNA can be transcribed. So far beta chain genes have been extensively studied in the human and in the mouse system and we have very little information on other mammals. Our aims were to obtain information that may provide a structural basis for understanding developmental as well as evolutionary aspects of the TCR gene system in mammals. In this study we compare the hybridization pattern between a human cDNA probe coding for the beta chain constant region and restricted genomic DNA extracted from lymphocytes deriving from human as well as from rat and lamb. The comparison of the hybridization data represent a first piece of information about the variation of the structure of the TCR beta chain genes in mammals.  相似文献   

13.
Development of the alphabeta and gammadelta T cell lineages is dependent upon the rearrangement and expression of the TCRalpha and beta or gamma and delta genes, respectively. Although the timing and sequence of rearrangements of the TCRalpha and TCRbeta loci in adult murine thymic precursors has been characterized, no similar information is available for the TCRgamma and TCRdelta loci. In this report, we show that approximately half of the total TCRdelta alleles initiate rearrangements at the CD44highCD25+ stage, whereas the TCRbeta locus is mainly in germline configuration. In the subsequent CD44lowCD25+ stage, most TCRdelta alleles are fully recombined, whereas TCRbeta rearrangements are only complete on 10-30% of alleles. These results indicate that rearrangement at the TCRdelta locus can precede that of TCRbeta locus recombination by one developmental stage. In addition, we find a bias toward productive rearrangements of both TCRdelta and TCRgamma genes among CD44highCD25+ thymocytes, suggesting that functional gammadelta TCR complexes can be formed before the rearrangement of TCRbeta. These data support a model of lineage commitment in which sequential TCR gene rearrangements may influence alphabeta/gammadelta lineage decisions. Further, because TCR gene rearrangements are generally limited to T lineage cells, these analyses provide molecular evidence that irreversible commitment to the T lineage can occur as early as the CD44highCD25+ stage of development.  相似文献   

14.
15.
16.
Analysis of the paired i.e. matching TCR α- and β-chain rearrangements of single human T cells is required for a precise investigation of clonal diversity, tissue distribution and specificity of protective and pathologic T-cell mediated immune responses. Here we describe a multiplex RT-PCR based technology, which for the first time allows for an unbiased analysis of the complete sequences of both α- and β-chains of TCR from single T cells. We validated our technology by the analysis of the pathologic T-cell infiltrates from tissue lesions of two T-cell mediated autoimmune diseases, psoriasis vulgaris (PV) and multiple sclerosis (MS). In both disorders we could detect various T cell clones as defined by multiple T cells with identical α- and β-chain rearrangements distributed across the tissue lesions. In PV, single cell TCR analysis of lesional T cells identified clonal CD8(+) T cell expansions that predominated in the epidermis of psoriatic plaques. An MS brain lesion contained two dominant CD8(+) T-cell clones that extended over the white and grey matter and meninges. In both diseases several clonally expanded T cells carried dual TCRs composed of one Vβ and two different Vα-chain rearrangements. These results show that our technology is an efficient instrument to analyse αβ-T cell responses with single cell resolution in man. It should facilitate essential new insights into the mechanisms of protective and pathologic immunity in many human T-cell mediated conditions and allow for resurrecting functional TCRs from any αβ-T cell of choice that can be used for investigating their specificity.  相似文献   

17.
Although oncogenes and tumor suppressor genes have been implicated in carcinogenesis and tumor progression, their relationship to the development of genomic instability has not been elucidated. To examine this role, we transfected oncogenes (polyomavirus middle [Py] and large T [MT and LT]) and adenovirus serotype 5 E1A) into two NIH 3T3-derived cell lines, EN/NIH 2-4 and EN/NIH 2-20. Both cell lines contain two stable integrants of a variant of the retrovirus vector pZipNeoSV(x)1 that has been modified by deletion of the enhancer elements from the long terminal repeats. DNA rearrangements activating the silent neomycin phosphotransferase gene (neo) present in these integrants were identified by selection of cells in the antibiotic G418. Whereas control-transfected EN/NIH cell lines do not yield G418-resistant subclones (GRSs), a fraction of oncogene-transfected EN/NIH 2-4 (8 of 19 Py MT, 5 of 17 Py LT, and 11 of 19 E1A) and 2-20 (7 of 15 Py MT) cell lines gave rise to GRSs at differing frequencies (0.33 x 10(-6) to 46 x 10(-6) for line 2-4 versus 0.11 x 10(-6) to 1.3 x 10(-6) for line 2-20) independent of cell generation time. In contrast, a distinctly smaller fraction of mutant Py MT-transfected EN/NIH cell lines (1 of 10 MT23, 1 of 10 MT1015, and 0 of 10 MT59b) resulted in GRSs. Southern analysis of DNA from selected oncogene-transfected GRSs demonstrated genomic rearrangements of neo-containing cellular DNA that varied in type (amplification and/or novel fragments) and frequency depending on the specific oncogene and EN/NIH cell line used in transfection. Furthermore, only one of the two neo-containing genomic loci present in both EN/NIH cell lines appeared to be involved in these genomic events. In addition to effects related to the genomic locus, these observations support a role for oncogenes in the development of genetic changes associated with tumor progression.  相似文献   

18.
TCR gene rearrangement generates diversity of T lymphocytes by V(D)J recombination. Ig genes are rearranged in B cells using the same enzyme machinery. Physiologically, TCR gene is postulated to rearrange exclusively in T lineage, but malignant B precursor lymphoblasts contain rearranged TCR genes in most patients. Several mechanisms by which malignant cells break the regulation of V(D)J recombination have been proposed. In this study we show that incomplete TCR delta rearrangements V2-D3 and D2-D3 occur each in up to 16% alleles in B lymphocytes of all healthy donors studied, but complete VDJ rearrangement was negative at the sensitivity limit of 1%. Data are based on real-time quantitative PCR validated by PAGE and sequencing of the cloned products. Therefore, TCR genes rearrange not exclusively in T lineage. This study opens up further questions regarding the exact extent of the "cross-lineage" TCR or Ig rearrangements in normal lymphocytes, specific subsets in which the cross-lineage rearrangements occur, and the physiological importance of these rearrangements.  相似文献   

19.
To determine whether T cell receptor genes follow the same principle of allelic exclusion as B lymphocytes, we have analyzed the rearrangements and expression of TCR alpha and beta genes in the progeny of the CD3+, CD4-/CD8- M14T line. Here, we show that this line can undergo secondary rearrangements that replace the pre-existing V alpha-J alpha rearrangements by joining an upstream V alpha gene to a downstream J alpha segment. Both the productively and nonproductively rearranged alleles in the M14T line can undergo secondary rearrangements while its TCR beta genes are stable. These secondary recombinations are usually productive, and new forms of TCR alpha polypeptides are expressed in these cells in association with the original C beta chain. Developmental control of this V alpha-J alpha replacement phenomenon could play a pivotal role in the thymic selection of the T cell repertoire.  相似文献   

20.
Zhang Y  Shi M  Wen Q  Luo W  Yang Z  Zhou M  Ma L 《Cellular immunology》2012,274(1-2):19-25
Secondary rearrangements of the T cell receptor (TCR) represent a genetic correction mechanism which changes T cell specificity by re-activating V(D)J recombination in peripheral T cells. Murine T-cell hybridoma A1.1 was employed to investigate whether antigenic stimulation induced re-expression of recombinase genes and altered TCR Vβ expression. Following repeated antigenic stimulation, A1.1 cells were induced to re-express recombination activating gene (RAG)1 and terminal deoxynucleotidyl transferase (TdT) which are generally considered prerequisite to TCR gene rearrangement. Accompanied with the significant changes in TCR mRNA levels over time, it is suggested that secondary rearrangements may be induced in A1.1 cells, which represent a mature T cell clone capable of re-expressing RAG genes and possesses the prerequisite for secondary V(D)J rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号