首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroautophagy (autophagy) is a highly conserved cellular recycling process involved in degradation of eukaryotic cellular components. During autophagy, macromolecules and organelles are sequestered into the double-membrane autophagosome and degraded in the vacuole/lysosome. Autophagy-related 8 (Atg8), a core Atg protein essential for autophagosome formation, is a marker of several autophagic structures: the pre-autophagosomal structure (PAS), isolation membrane (IM), and autophagosome. Atg8 is conjugated to phosphatidylethanolamine (PE) through a ubiquitin-like conjugation system to yield Atg8-PE; this reaction is called Atg8 lipidation. Although the mechanisms of Atg8 lipidation have been well studied in vitro, the cellular locale of Atg8 lipidation remains enigmatic. Atg3 is an E2-like enzyme that catalyzes the conjugation reaction between Atg8 and PE. Therefore, we hypothesized that the localization of Atg3 would provide insights about the site of the lipidation reaction. To explore this idea, we constructed functional GFP-tagged Atg3 (Atg3-GFP) by inserting the GFP portion immediately after the handle region of Atg3. During autophagy, Atg3-GFP transiently formed a single dot per cell on the vacuolar membrane. This Atg3-GFP dot colocalized with 2× mCherry-tagged Atg8, demonstrating that Atg3 is localized to autophagic structures. Furthermore, we found that Atg3-GFP is localized to the IM by fine-localization analysis. The localization of Atg3 suggests that Atg3 plays an important role in autophagosome formation at the IM.  相似文献   

2.
Atg3 is an E2-like enzyme that catalyzes the conjugation of Atg8 and phosphatidylethanolamine (PE). The Atg8-PE conjugate is essential for autophagy, which is the bulk degradation process of cytoplasmic components by the vacuolar/lysosomal system. We report here the crystal structure of Saccharomyces cerevisiae Atg3 at 2.5-A resolution. Atg3 has an alpha/beta-fold, and its core region is topologically similar to canonical E2 enzymes. Atg3 has two regions inserted in the core region, one of which consists of approximately 80 residues and has a random coil structure in solution and another with a long alpha-helical structure that protrudes from the core region as far as 30 A. In vivo and in vitro analyses suggested that the former region is responsible for binding Atg7, an E1-like enzyme, and that the latter is responsible for binding Atg8. A sulfate ion was bound near the catalytic cysteine of Atg3, suggesting a possible binding site for the phosphate moiety of PE. The structure of Atg3 provides a molecular basis for understanding the unique lipidation reaction that Atg3 carries out.  相似文献   

3.
《Autophagy》2013,9(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8–PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8–PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8–PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8–PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

4.
Atg12 is conjugated to Atg5 through enzymatic reactions similar to ubiquitination. The Atg12–Atg5 conjugate functions as an E3‐like enzyme to promote lipidation of Atg8, whereas lipidated Atg8 has essential roles in both autophagosome formation and selective cargo recognition during autophagy. However, the molecular role of Atg12 modification in these processes has remained elusive. Here, we report the crystal structure of the Atg12–Atg5 conjugate. In addition to the isopeptide linkage, Atg12 forms hydrophobic and hydrophilic interactions with Atg5, thereby fixing its position on Atg5. Structural comparison with unmodified Atg5 and mutational analyses showed that Atg12 modification neither induces a conformational change in Atg5 nor creates a functionally important architecture. Rather, Atg12 functions as a binding module for Atg3, the E2 enzyme for Atg8, thus endowing Atg5 with the ability to interact with Atg3 to facilitate Atg8 lipidation.  相似文献   

5.
Nakatogawa H  Ishii J  Asai E  Ohsumi Y 《Autophagy》2012,8(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8-PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8-PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8-PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8-PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

6.
The autophagy-related protein 8 (Atg8) conjugation system is essential for the formation of double-membrane vesicles called autophagosomes during autophagy, a bulk degradation process conserved among most eukaryotes. It is also important in yeast for recognizing target vacuolar enzymes through the receptor protein Atg19 during the cytoplasm-to-vacuole targeting (Cvt) pathway, a selective type of autophagy. Atg3 is an E2-like enzyme that conjugates Atg8 with phosphatidylethanolamine. Here, we show that Atg3 directly interacts with Atg8 through the WEDL sequence, which is distinct from canonical interaction between E2 and ubiquitin-like modifiers. Moreover, NMR experiments suggest that the mode of interaction between Atg8 and Atg3 is quite similar to that between Atg8/LC3 and the Atg8 family interacting motif (AIM) conserved in autophagic receptors, such as Atg19 and p62. Thus, the WEDL sequence in Atg3 is a canonical AIM. In vitro analyses showed that Atg3 AIM is crucial for the transfer of Atg8 from the Atg8∼Atg3 thioester intermediate to phosphatidylethanolamine but not for the formation of the intermediate. Intriguingly, in vivo experiments showed that it is necessary for the Cvt pathway but not for starvation-induced autophagy. Atg3 AIM attenuated the inhibitory effect of Atg19 on Atg8 lipidation in vitro, suggesting that Atg3 AIM may be important for the lipidation of Atg19-bound Atg8 during the Cvt pathway.  相似文献   

7.
In yeast, phosphatidylethanolamine is a target of the Atg8 modifier in ubiquitylation-like reactions essential for autophagy. Three human Atg8 (hAtg8) homologs, LC3, GABARAP, and GATE-16, have been characterized as modifiers in reactions mediated by hAtg7 (an E1-like enzyme) and hAtg3 (an E2-like enzyme) as in yeast Atg8 lipidation, but their final targets have not been identified. The results of a recent study in which COS7 cells were incubated with [14C]ethanolamine for 48 h suggested that phosphatidylethanolamine is a target of LC3. However, these results were not conclusive because of the long incubation time. To identify the phospholipid targets of Atg8 homologs, we reconstituted conjugation systems for mammalian Atg8 homologs in vitro using purified recombinant Atg proteins and liposomes. Each purified mutant Atg8 homolog with an exposed C-terminal Gly formed an E1-substrate intermediate with hAtg7 via a thioester bond in an ATP-dependent manner and formed an E2-substrate intermediate with hAtg3 via a thioester bond dependent on ATP and hAtg7. A conjugated form of each Atg8 homolog was observed in the presence of hAtg7, hAtg3, ATP, and liposomes. In addition to phosphatidylethanolamine, in vitro conjugation experiments using synthetic phospholipid liposomes showed that phosphatidylserine is also a target of LC3, GABARAP, and GATE-16. In contrast, thin layer chromatography of phospholipids released on hAtg4B-digestion from endogenous LC3-phospholipid conjugate revealed that phosphatidylethanolamine, but not phosphatidylserine, is the predominant target phospholipid of LC3 in vivo. The discrepancy between in vitro and in vivo reactions suggested that there may be selective factor(s) involved in the endogenous LC3 conjugation system.  相似文献   

8.
Geng J  Klionsky DJ 《EMBO reports》2008,9(9):859-864
As a lysosomal/vacuolar degradative pathway that is conserved in eukaryotic organisms, autophagy mediates the turnover of long-lived proteins and excess or aberrant organelles. The main characteristic of autophagy is the formation of a double-membrane vesicle, the autophagosome, which envelops part of the cytoplasm and delivers it to the lysosome/vacuole for breakdown and eventual recycling of the degradation products. Among the approximately 30 autophagy-related (Atg) genes identified so far, there are two ubiquitin-like proteins, Atg12 and Atg8. Analogous to ubiquitination, Atg12 is conjugated to Atg5 by Atg7--an E1-like protein--and Atg10--an E2-like protein. Similarly, Atg7 and Atg3 are the respective E1-like and E2-like proteins that mediate the conjugation of Atg8 to phosphatidylethanolamine. Both Atg12-Atg5 and Atg8 localize to the developing autophagosome. The Atg12-Atg5 conjugate facilitates the lipidation of Atg8 and directs its correct subcellular localization. Atg8-phosphatidylethanolamine is probably a scaffold protein that supports membrane expansion and the amount present correlates with the size of autophagosomes.  相似文献   

9.
《Autophagy》2013,9(7):911-913
Atg8 and its mammalian homolog LC3, ubiquitin-like proteins (Ubls) required for autophagosome formation, are remarkably unique in that their conjugation target is the lipid phosphatidylethanolamine (PE). Although PE was identified as the sole lipid conjugated with Atg8/LC3 in vivo, phosphatidylserine (PS) can be also a good substrate for its conjugation reaction in vitro. This posed a simple, intriguing question: What confers substrate specificity to lipidation of Atg8/LC3 in vivo? Our recent in vitro studies propose that intracellular milieus such as cytosolic pH and acidic phospholipids in membranes significantly contribute to selective production of the Atg8¬¬–PE conjugate.1

Addendum to: Oh-oka K, Nakatogawa H, Ohsumi Y. Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8. J Biol Chem 2008; 10.1074/jbc.M801836200.  相似文献   

10.
Atg8 and its mammalian homolog LC3, ubiquitin-like proteins (Ubls) required for autophagosome formation, are remarkably unique in that their conjugation target is the lipid phosphatidylethanolamine (PE). Although PE was identified as the sole lipid conjugated with Atg8/LC3 in vivo, phosphatidylserine (PS) can be also a good substrate for its conjugation reaction in vitro. This posed a simple, intriguing question: What confers substrate specificity to lipidation of Atg8/LC3 in vivo? Our recent in vitro studies propose that intracellular milieus such as cytosolic pH and acidic phospholipids in membranes significantly contribute to selective production of the Atg8-PE conjugate.  相似文献   

11.
Autophagy is a bulk degradation process in eukaryotic cells; autophagosomes enclose cytoplasmic components for degradation in the lysosome/vacuole. Autophagosome formation requires two ubiquitin-like conjugation systems, the Atg12 and Atg8 systems, which are tightly associated with expansion of autophagosomal membrane. Previous studies have suggested that there is a hierarchy between these systems; the Atg12 system is located upstream of the Atg8 system in the context of Atg protein organization. However, the concrete molecular relationship is unclear. Here, we show using an in vitro Atg8 conjugation system that the Atg12-Atg5 conjugate, but not unconjugated Atg12 or Atg5, strongly enhances the formation of the other conjugate, Atg8-PE. The Atg12-Atg5 conjugate promotes the transfer of Atg8 from Atg3 to the substrate, phosphatidylethanolamine (PE), by stimulating the activity of Atg3. We also show that the Atg12-Atg5 conjugate interacts with both Atg3 and PE-containing liposomes. These results indicate that the Atg12-Atg5 conjugate is a ubiquitin-protein ligase (E3)-like enzyme for Atg8-PE conjugation reaction, distinctively promoting protein-lipid conjugation.  相似文献   

12.
Ubiquitin‐like proteins (UBLs) are activated, transferred and conjugated by E1‐E2‐E3 enzyme cascades. E2 enzymes for canonical UBLs such as ubiquitin, SUMO, and NEDD8 typically use common surfaces to bind to E1 and E3 enzymes. Thus, canonical E2s are required to disengage from E1 prior to E3‐mediated UBL ligation. However, E1, E2, and E3 enzymes in the autophagy pathway are structurally and functionally distinct from canonical enzymes, and it has not been possible to predict whether autophagy UBL cascades are organized according to the same principles. Here, we address this question for the pathway mediating lipidation of the human autophagy UBL, LC3. We utilized bioinformatic and experimental approaches to identify a distinctive region in the autophagy E2, Atg3, that binds to the autophagy E3, Atg12~Atg5‐Atg16. Short peptides corresponding to this Atg3 sequence inhibit LC3 lipidation in vitro. Notably, the E3‐binding site on Atg3 overlaps with the binding site for the E1, Atg7. Accordingly, the E3 competes with Atg7 for binding to Atg3, implying that Atg3 likely cycles back and forth between binding to Atg7 for loading with the UBL LC3 and binding to E3 to promote LC3 lipidation. The results show that common organizational principles underlie canonical and noncanonical UBL transfer cascades, but are established through distinct structural features.  相似文献   

13.
14.
Atg3‐catalyzed transferring of Atg8 to phosphatidylethanolamine (PE) in the phagophore membrane is essential for autophagy. Previous studies have demonstrated that this process requires Atg3 to interact with the phagophore membrane via its N‐terminal amphipathic helix. In this study, by using combined biochemical and biophysical approaches, our data showed that in addition to binding to the membranes, Atg3 attenuates lipid diffusion and enriches lipid molecules with smaller headgroup. Our data suggest that Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement.  相似文献   

15.
Analysis of the Plasmodium falciparum genome reveals a limited number of putative autophagy genes, specifically the four genes involved in ATG8 lipidation, an essential step in formation of autophagosomes. In yeast, Atg8 lipidation requires the E1-type ligase Atg7, an E2-type ligase Atg3, and a cysteine protease Atg4. These four putative P. falciparum ATG (PfATG) genes are transcribed during the parasite’s erythrocytic stages. PfAtg7 has relatively low identity and similarity to yeast Atg7 (14.7% and 32.2%, respectively), due primarily to long insertions typical of P. falciparum. Excluding the insertions the identity and similarity are higher (38.0% and 70.8%, respectively). This and the fact that key residues are conserved, including the catalytic cysteine and ATP binding domain, we hypothesize that PfAtg7 is the activating enzyme of PfAtg8. To assess the role of PfAtg7 we have generated two transgenic parasite lines. In one, the PfATG7 locus was modified to introduce a C-terminal hemagglutinin tag. Western blotting reveals two distinct protein species, one migrating near the predicted 150 kDa and one at approximately 65 kDa. The second transgenic line introduces an inducible degradation domain into the PfATG7 locus, allowing us to rapidly attenuate PfAtg7 protein levels. Corresponding species are also observed in this parasite line at approximately 200 kDa and 100 kDa. Upon PfATG7 attenuation parasites exhibit a slow growth phenotype indicating the essentiality of this putative enzyme for normal growth.  相似文献   

16.
Autophagy is a catabolic process involved in the degradation of a cell's own components for cell growth, development, homeostasis, and the recycling of cellular products. Autophagosome is an essential component in the protozoan parasite during differentiation and encystation. The present study identified and characterized autophagy-related protein (Atg) 3, a member of Atg8 conjugation system, in Acanthamoeba castellanii (AcAtg3). AcAtg3 encoding a 304 amino acid protein showed high similarity with the catalytic cysteine site of other E2 like enzymes of ubiquitin system. Predicted 3D structure of AcAtg3 revealed a hammer-like shape, which is the characteristic structure of E2-like enzymes. The expression level of AcAtg3 did not increase during encystation. However, the formation of mature cysts was significantly reduced in Atg3-siRNA transfected cells in which the production of Atg8-phosphatidylethanolamine conjugate was inhibited. Fluorescent microscopic analysis revealed that dispersed AcAtg3-EGFP fusion protein gathered around autophagosomal membranes during encystation. These results provide important information for understanding autophagic machinery through the lipidation reaction mediated by Atg3 in Acanthamoeba.  相似文献   

17.
《Autophagy》2013,9(2):110-118
Atg12, a post-translational modifier, is activated and conjugated to Atg5 by a ubiquitin-like conjugation system, though it has no obvious sequence homology to ubiquitin. The Atg12-Atg5 conjugate is essential for autophagy, an intracellular bulk degradation process. Here, we show that the carboxyl-terminal region of Atg12 that is predicted to fold into a ubiquitin-like structure is necessary and sufficient for both conjugation and autophagy, which indicates that the domain essential for autophagy resides in the ubiquitin-fold region. We further show that two hydrophobic residues within the ubiquitin-fold region are important for autophagy: mutation at Y149 affects conjugate formation catalyzed by Atg10, an E2-like enzyme, while mutation at F154 has no effect on Atg12-Atg5 conjugate formation but its hydrophobic nature is essential for autophagy. In response to the F154 mutation, Atg8-PE conjugation, the other ubiquitin-like conjugation in autophagy, is severely reduced and autophagosome formation fails. Gel filtration analysis suggests that F154 plays a critical role in the assembly of a functional Atg12-Atg5?Atg16 complex that is requisite for autophagosome formation.  相似文献   

18.
Atg12 is a post-translational modifier that is activated and conjugated to its single target, Atg5, by a ubiquitin-like conjugation system. The Atg12-Atg5 conjugate is essential for autophagy, the bulk degradation process of cytoplasmic components by the vacuolar/lysosomal system. Here, we demonstrate that the Atg12 conjugation system exists in Arabidopsis and is essential for plant autophagy as well as in yeast and mammals. We also report the crystal structure of Arabidopsis thaliana (At) ATG12 at 1.8 Å resolution. Despite no obvious sequence homology with ubiquitin, the structure of AtATG12 shows a ubiquitin fold strikingly similar to those of mammalian homologs of Atg8, the other ubiquitin-like modifier essential for autophagy, which is conjugated to phosphatidylethanolamine. Two types of hydrophobic patches are present on the surface of AtATG12: one is conserved in both Atg12 and Atg8 orthologs, while the other is unique to Atg12 orthologs. Considering that they share Atg7 as an E1-like enzyme, we suggest that the first hydrophobic patch is responsible for the conjugation reaction, while the latter is involved in Atg12-specific functions.  相似文献   

19.
Atg12 is a post-translational modifier that is activated and conjugated to its single target, Atg5, by a ubiquitin-like conjugation system. The Atg12-Atg5 conjugate is essential for autophagy, the bulk degradation process of cytoplasmic components by the vacuolar/lysosomal system. Here, we demonstrate that the Atg12 conjugation system exists in Arabidopsis and is essential for plant autophagy as well as in yeast and mammals. We also report the crystal structure of Arabidopsis thaliana (At) ATG12 at 1.8 A resolution. Despite no obvious sequence homology with ubiquitin, the structure of AtATG12 shows a ubiquitin fold strikingly similar to those of mammalian homologs of Atg8, the other ubiquitin-like modifier essential for autophagy, which is conjugated to phosphatidylethanolamine. Two types of hydrophobic patches are present on the surface of AtATG12: one is conserved in both Atg12 and Atg8 orthologs, while the other is unique to Atg12 orthologs. Considering that they share Atg7 as an E1-like enzyme, we suggest that the first hydrophobic patch is responsible for the conjugation reaction, while the latter is involved in Atg12-specific functions.  相似文献   

20.
Hanada T  Ohsumi Y 《Autophagy》2005,1(2):110-118
Atg12, a post-translational modifier, is activated and conjugated to Atg5 by a ubiquitin-like conjugation system, though it has no obvious sequence homology to ubiquitin. The Atg12-Atg5 conjugate is essential for autophagy, an intracellular bulk degradation process. Here, we show that the carboxyl-terminal region of Atg12 that is predicted to fold into a ubiquitin-like structure is necessary and sufficient for both conjugation and autophagy, which indicates that the domain essential for autophagy resides in the ubiquitin-fold region. We further show that two hydrophobic residues within the ubiquitin-fold region are important for autophagy: mutation at Y149 affects conjugate formation catalyzed by Atg10, an E2-like enzyme, while mutation at F154 has no effect on Atg12-Atg5 conjugate formation but its hydrophobic nature is essential for autophagy. In response to the F154 mutation, Atg8-PE conjugation, the other ubiquitin-like conjugation in autophagy, is severely reduced and autophagosome formation fails. Gel filtration analysis suggests that F154 plays a critical role in the assembly of a functional Atg12-Atg5.Atg16 complex that is requisite for autophagosome formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号