首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This review on normal and neoplastic growth of the prostate emphasizes the importance of epithelial-mesenchymal/stromal interactions. Accordingly, during prostatic development urogenital sinus mesenchyme (a) specifies prostatic epithelial identity, (b) induces epithelial bud formation, (c) elicits prostatic bud growth and regulates ductal branching, (d) promotes differentiation of a secretory epithelium, and (e) specifies the types of secretory proteins expressed. In reciprocal fashion, prostatic epithelium induces smooth muscle differentiation in the mesenchyme. Epithelial-mesenchymal interactions during development continue postnatally into adulthood as stromal-epithelial interactions which play a homeostatic role and in so doing reciprocally maintain epithelial and stromal differentiation and growth-quiescence. Prostatic carcinogenesis involves perturbation of these reciprocal homeostatic cell-cell interactions. The central role of mesenchyme in prostatic epithelial development has been firmly established through analysis of tissue recombinants composed of androgen-receptor-positive wild-type mesenchyme and androgen-receptor-negative epithelium. These studies revealed that at the very least ductal morphogenesis, epithelial cytodifferentiation, epithelial apoptosis and epithelial proliferation are regulated by stromal and not epithelial androgen receptors. Likewise, progression from non-tumorigenesis to tumorigenesis elicited by testosterone plus estradiol proceeds via paracrine mechanisms. Thus, stromal-epithelial interactions play critical roles in the hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development.  相似文献   

2.
The role of GDNF in patterning the excretory system   总被引:5,自引:0,他引:5  
Mesenchymal-epithelial interactions are an important source of information for pattern formation during organogenesis. In the developing excretory system, one of the secreted mesenchymal factors thought to play a critical role in patterning the growth and branching of the epithelial ureteric bud is GDNF. We have tested the requirement for GDNF as a paracrine chemoattractive factor by altering its site of expression during excretory system development. Normally, GDNF is secreted by the metanephric mesenchyme and acts via receptors on the Wolffian duct and ureteric bud epithelium. Misexpression of GDNF in the Wolffian duct and ureteric buds resulted in formation of multiple, ectopic buds, which branched independently of the metanephric mesenchyme. This confirmed the ability of GDNF to induce ureter outgrowth and epithelial branching in vivo. However, in mutant mice lacking endogenous GDNF, kidney development was rescued to a substantial degree by GDNF supplied only by the Wolffian duct and ureteric bud. These results indicate that mesenchymal GDNF is not required as a chemoattractive factor to pattern the growth of the ureteric bud within the developing kidney, and that any positional information provided by the mesenchymal expression of GDNF may provide for renal branching morphogenesis is redundant with other signals.  相似文献   

3.
Prostatic growth and development are regulated by FGF10.   总被引:10,自引:0,他引:10  
  相似文献   

4.
Abstract This review summarizes the history of research on mesenchymal–epithelial interactions in prostatic development from the first studies in 1970 to the present. From this study we have learned that prostatic development requires a reciprocal interaction between epithelium and mesenchyme in which urogenital sinus mesenchyme induces and patterns epithelial development and differentiation, while developing prostatic epithelium induces and patterns mesenchymal differentiation into smooth muscle and other resident cell types in the stroma. Prostatic development requires androgen action mediated by the androgen receptor (AR). Through analysis of tissue recombinants composed of wild-type and AR-null epithelium and mesenchyme, we have learned that many "androgenic effects" on prostatic epithelium do not require epithelial AR, but instead are elicited by the paracrine action of AR-positive mesenchyme. Present and future studies reviewed in this issue deal with the molecular mechanisms in this developmental communication between epithelium and mesenchyme.  相似文献   

5.
Genistein, a phytoestrogen and a kind of endocrine disrupters, inhibits tyrosine-specific protein kinase activity of the epidermal growth factor (EGF) receptor. It is also effective both in the suppression of the prostatic cell proliferation and the prostate carcinogenesis. We have recently demonstrated that several growth factors, like EGF, transforming growth factor-alpha (TGF-alpha), or keratinocyte growth factor (KGF), can induce prostatic bud formation in the absence of androgen. The present study was performed to investigate whether genistein can suppress testosterone-induced prostatic bud formation. Urogenital sinuses of 16.5-day male rat fetuses were cultured organotypically for 5 days in a serum-free medium containing 10 or 100 ng/ml genistein and 50 ng/ml testosterone. The number and total volume of prostatic buds were analyzed by laser scanning microscopy and computerized. We found that genistein inhibits significantly testosterone-induced prostatic bud formation. In the presence of genistein, cell proliferation of the sinus epithelium was suppressed and the number of prostatic buds and total volume of the buds were reduced as compared with those in the sinuses cultured with testosterone alone. Genistein did not appear to cause necrosis of the sinus. These results support our hypothesis that growth factors like EGF secreted from the sinus mesenchyme activated by testosterone are involved in the induction and stimulation of growth of the prostatic buds.  相似文献   

6.
FGF-10 plays an essential role in the growth of the fetal prostate   总被引:4,自引:0,他引:4  
Induction and branching morphogenesis of the prostate are dependent on androgens, which act via the mesenchyme to induce prostatic epithelial development. One mechanism by which the mesenchyme may regulate the epithelium is through secreted growth factors such as FGF-10. We have examined the male reproductive tract of FGF-10(-/-) mice, and at birth, most of the male secondary sex organs were absent or atrophic, including the prostate, seminal vesicle, bulbourethral gland, and caudal ductus deferens. Rudimentary prostatic buds were occasionally observed in the prostatic anlagen, the urogenital sinus (UGS) of FGF-10(-/-) mice. FGF-10(-/-) testes produced sufficient androgens to induce prostatic development in control UGS organ cultures. Prostatic rudiments from FGF-10(-/-) mice transplanted into intact male hosts grew very little, but showed some signs of prostatic differentiation. In cultures of UGS, the FGF-10 null phenotype was partially reversed by the addition of FGF-10 and testosterone, resulting in the formation of prostatic buds. FGF-10 alone did not stimulate prostatic bud formation in control or FGF-10(-/-) UGS. Thus, FGF-10 appears to act as a growth factor which is required for development of the prostate and several other accessory sex organs.  相似文献   

7.
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial‐mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β‐catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.  相似文献   

8.
Signaling by the ureteric bud epithelium is essential for survival, proliferation and differentiation of the metanephric mesenchyme during kidney development. Most studies that have addressed ureteric signaling have focused on the proximal, branching, ureteric epithelium. We demonstrate that sonic hedgehog is expressed in the ureteric epithelium of the distal, non-branching medullary collecting ducts and continues into the epithelium of the ureter -- the urinary outflow tract that connects the kidney with the bladder. Upregulation of patched 1, the sonic hedgehog receptor and a downstream target gene of the signaling pathway in the mesenchyme surrounding the distal collecting ducts and the ureter suggests that sonic hedgehog acts as a paracrine signal. In vivo and in vitro analyses demonstrate that sonic hedgehog promotes mesenchymal cell proliferation, regulates the timing of differentiation of smooth muscle progenitor cells, and sets the pattern of mesenchymal differentiation through its dose-dependent inhibition of smooth muscle formation. In addition, we also show that bone morphogenetic protein 4 is a downstream target gene of sonic hedgehog signaling in kidney stroma and ureteral mesenchyme, but does not mediate the effects of sonic hedgehog in the control of mesenchymal proliferation.  相似文献   

9.
The embryonic gut of vertebrates consists of endodermal epithelium, surrounding mesenchyme derived from splanchnic mesoderm and enteric neuronal components derived from neural crest cells. During gut organogenesis, the mesenchyme differentiates into distinct concentric layers around the endodermal epithelium forming the lamina propria, muscularis mucosae, submucosa and lamina muscularis (the smooth muscle layer). The smooth muscle layer and enteric plexus are formed at the outermost part of the gut, always some distance away from the epithelium. How this topographical organization of gut mesenchyme is established is largely unknown. Here we show the following: (1) Endodermal epithelium inhibits differentiation of smooth muscle and enteric neurons in adjacent mesenchyme. (2) Endodermal epithelium activates expression of patched and BMP4 in adjacent non-smooth muscle mesenchyme, which later differentiates into the lamina propria and submucosa. (3) Sonic hedgehog (Shh) is expressed in endodermal epithelium and disruption of Shh-signaling by cyclopamine induces differentiation of smooth muscle and a large number of neurons even in the area adjacent to epithelium. (4) Shh can mimic the effect of endodermal epithelium on the concentric stratification of the gut. Taken together, these data suggest that endoderm-derived Shh is responsible for the patterning across the radial axis of the gut through induction of inner components and inhibition of outer components, such as smooth muscle and enteric neurons.  相似文献   

10.
《Organogenesis》2013,9(2):45-51
Current interest in the potential use of pancreatic stem-cells in the treatment of insulin dependent diabetes mellitus has led to increased research into normal pancreatic development. Pancreatic organogenesis involves branching morphogenesis of undifferentiated epithelium within surrounding mesenchyme. Current understanding is that the pancreatic islets develop exclusively from the epithelium of the embryonic buds. However, a cellular contribution to islets by mesenchyme has not been conclusively excluded. We present evidence that the mesenchyme of both the dorsal pancreatic bud and stomach rudiment make a substantial contribution of cells to islets during development in a three-dimensional avian model. These data suggest that mesenchyme can be a source not only of signals but also of cells for the definitive epithelia, making pancreatic organogenesis more akin to that of the kidney than to other endodermal organs. This raises the possibility for the use of mesenchymal cells as stem- or progenitor- cells for islet transplantation.  相似文献   

11.
Current interest in the potential use of pancreatic stem-cells in the treatment of insulin dependent diabetes mellitus has led to increased research into normal pancreatic development. Pancreatic organogenesis involves branching morphogenesis of undifferentiated epithelium within surrounding mesenchyme. Current understanding is that the pancreatic islets develop exclusively from the epithelium of the embryonic buds. However, a cellular contribution to islets by mesenchyme has not been conclusively excluded. We present evidence that the mesenchyme of both the dorsal pancreatic bud and stomach rudiment make a substantial contribution of cells to islets during development in a three-dimensional avian model. These data suggest that mesenchyme can be a source not only of signals but also of cells for the definitive epithelia, making pancreatic organogenesis more akin to that of the kidney than to other endodermal organs. This raises the possibility for the use of mesenchymal cells as stem-or progenitor-cells for islet transplantation.Key Words: islets, stem-cells, development, epithelium, mesenchyme, pancreas, stomach, chick-quail, 3-dimensional, endocrine  相似文献   

12.
13.
Morphogenesis of the lung is regulated by reciprocal signaling between epithelium and mesenchyme. In previous studies, we have shown that FGF9 signals are essential for lung mesenchyme development. Using Fgf9 loss-of-function and inducible gain-of-function mouse models, we show that lung mesenchyme can be divided into two distinct regions: the sub-mesothelial and sub-epithelial compartments, which proliferate in response to unique growth factor signals. Fibroblast growth factor (FGF) 9 signals from the mesothelium (the future pleura) to sub-mesothelial mesenchyme through both FGF receptor (FGFR) 1 and FGFR2 to induce proliferation. FGF9 also signals from the epithelium to the sub-epithelial mesenchyme to maintain SHH signaling, which regulates cell proliferation, survival and the expression of mesenchymal to epithelial signals. We further show that FGF9 represses peribronchiolar smooth muscle differentiation and stimulates vascular development in vivo. We propose a model in which FGF9 and SHH signals cooperate to regulate mesenchymal proliferation in distinct submesothelial and subepithelial regions. These data provide a molecular mechanism by which mesothelial and epithelial FGF9 directs lung development by regulating mesenchymal growth, and the pattern and expression levels of mesenchymal growth factors that signal back to the epithelium.  相似文献   

14.
《Organogenesis》2013,9(1):14-21
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.  相似文献   

15.
16.
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.Key Words: growth factor, proliferation, apoptosis, ureteric bud, branching morphogenesis, epithelial progenitor, development, signaling  相似文献   

17.
Diffusable growth factors induce bladder smooth muscle differentiation   总被引:3,自引:0,他引:3  
Bladder smooth muscle differentiation is dependent on the presence of bladder epithelium. Previously, we have shown that direct contact between the epithelium and bladder mesenchyme (BLM) is necessary for this interaction. In this study, we tested the hypothesis that bladder smooth muscle can be induced via diffusable growth factors. Fourteen-day embryonic rat bladders were separated into bladder mesenchyme (prior to smooth muscle differentiation) and epithelium by enzymatic digestion and microdissection. Six in vitro experiments were performed with either direct cellular contact or no contact (1) 14-d embryonic bladder mesenchyme (BLM) alone (control), (Contact) (2) 14-d embryonic bladders intact (control), (3) 14-d embryonic bladder mesenchyme combined with BPH-1 cells (an epithelial prostate cell line) in direct contact, (4) 14-d embryonic bladder mesenchyme with recombined bladder epithelium (BLE) in direct contact, (No Contact) (5) 14-d embryonic bladder mesenchyme with BPH-1 prostatic epithelial cells cocultured in type 1 collagen gel on the bottom of the well, and (6) 14-d embryonic bladder mesenchyme with BPH-1 epithelium cultured in a monolayer on a transwell filter. In each case the bladder tissue was cultured on Millicell-CM 0.4-microm membranes for 7 d in plastic wells using serum free medium. Growth was assessed by observing the size of the bladder organoids in histologic cross section as well as the vertical height obtained in vitro. Immunohistochemical analysis of the tissue explants was performed to assess cellular differentiation with markers for smooth muscle alpha-actin and pancytokeratin to detect epithelial cells. Control (1) bladder mesenchyme grown alone did not exhibit growth or smooth muscle and epithelial differentiation. Contact experiments (2) intact embryonic bladder, (3) embryonic bladder mesenchyme recombined with BPH-1 cells, and (4) embryonic bladder mesenchyme recombined with urothelium each exhibited excellent growth and bladder smooth muscle and epithelial differentiation. Both noncontact experiments (5) and (6) exhibited growth as well as bladder smooth muscle and epithelial differentiation but to a subjectively lesser degree than the contact experiments. Direct contact of the epithelium with bladder mesenchyme provides the optimal environment for growth and smooth muscle differentiation. Smooth muscle growth and differentiation can also occur without direct cell to cell contact and is not specific to urothelium. This data supports the hypothesis that epithelium produces diffusable growth factors that induce bladder smooth muscle.  相似文献   

18.
Ulrich Drews  Ute Drews 《Cell》1977,10(3):401-404
In the male mouse, regression of the mammary gland anlagen is induced by testosterone during embryonic life. In the androgen-insensitive Tfm mouse, the gland anlagen are resistant to the testosterone action. To analyze cellular interactions in this process, we isolated the mammary gland anlagen from Tfm- and wild-type embryos. The epithelial buds were separated from the mesenchyme by trypsin-pancreatin treatment. From the epithelial and mesenchymal components, reciprocal recombinations were prepared and cultivated on millipore filter in the presence of testosterone. In combination with androgen-insensitive Tfm- mesenchyme, the wild-type buds survived the action of testosterone. On the other hand, in combination with wild-type mesenchyme, the androgen-insensitive Tfm epithelial buds were destroyed. The results show that testosterone induces detachment and degeneration of the buds via the mesenchyme.  相似文献   

19.
20.
Smooth muscle cells (SMCs) are a key component of many visceral organs, including the ureter, yet the molecular pathways that regulate their development from mesenchymal precursors are insufficiently understood. Here, we identified epithelial Wnt7b and Wnt9b as possible ligands of Fzd1-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated ureteric mesenchyme. Mice with a conditional deletion of Ctnnb1 in the ureteric mesenchyme exhibited hydroureter and hydronephrosis at newborn stages due to functional obstruction of the ureter. Histological analysis revealed that the layer of undifferentiated mesenchymal cells directly adjacent to the ureteric epithelium did not undergo characteristic cell shape changes, exhibited reduced proliferation and failed to differentiate into SMCs. Molecular markers for prospective SMCs were lost, whereas markers of the outer layer of the ureteric mesenchyme fated to become adventitial fibroblasts were expanded to the inner layer. Conditional misexpression of a stabilized form of Ctnnb1 in the prospective ureteric mesenchyme resulted in the formation of a large domain of cells that exhibited histological and molecular features of prospective SMCs and differentiated along this lineage. Our analysis suggests that Wnt signals from the ureteric epithelium pattern the ureteric mesenchyme in a radial fashion by suppressing adventitial fibroblast differentiation and initiating smooth muscle precursor development in the innermost layer of mesenchymal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号