首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vanadate (10(-4)-10(-3) M) effectively blocks Mg2+, ATP-dependent Ca2+ transport in sarcolemmal vesicles and induces a slowly tonic contraction of the smooth muscle. This contraction was observed both with and without nifedipine (10(-5) M) evoking complete inhibition of hyperpotassium contracture, the Ca2+ removal from the solution washing the muscular preparation stimulating the tone decrease. There is a close correlation between the dose-dependent effects of vanadate on the Ca pump activity and tension. It is concluded that in smooth muscles, at least in myometrium, the sarcolemmal Ca-pump is involved into the control of the tonic tension.  相似文献   

3.
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a major causative factor in atherosclerosis. Prostaglandins, secreted by endothelial cells, are reported to attenuate VSMC proliferation, but the mechanism through which this response is mediated is poorly denned. Here, the effect of prostaglandin receptor-selective agonists on the activity status of ERK and PKC, both known to modulate proliferative responses, was determined. The effect of the prostacyclin mimetic, iloprost, at inducing apoptosis was also investigated. VSMCs in culture were shown to express proteins that were detected by antibodies selective  相似文献   

4.
Vinculin is a key player in sensing and responding to external mechanical cues such as extracellular matrix stiffness. Increased matrix stiffness is often associated with certain pathological conditions including hypertension induced cellular cytoskeleton changes in vascular smooth muscle (VSM) cells. However, little is known on how stiffness affects cytoskeletal remodeling via vinculin in VSM cells. Thus, we utilized matrices with elastic moduli that simulate vascular stiffness in different stages of hypertension to investigate how matrix stiffness regulates cell cytoskeleton via vinculin in synthetic VSM cells. Through selecting a suitable reference gene, we found that an increase in physiologically relevant extracellular matrix stiffness (2–50?kPa) downregulates vinculin gene expression but upregulates vinculin protein expression. This discrepancy, which was not observed previously for non-muscle cells, suggests that the vinculin-mediated mecahnotransduction mechanism in synthetic VSM cells may be more complex than those proposed for non-muscle cells. Also adding to previous findings, we found that VSM cell growth may be impeded by substrates that are either too soft or too rigid.  相似文献   

5.
The concept of endothelium-derived relaxing factor (EDRF) implies that nitric oxide (NO) produced by NO synthase (NOS) in the endothelium in response to vasorelaxants such as acetylcholine (ACh) acts on the underlying vascular smooth muscle cells (VSMC) inducing vascular relaxation. The EDRF concept was derived from experiments on denuded blood vessel strips and, in frames of this concept, VSMC were regarded as passive recipients of NO from endothelial cells. However, it was later found that VSMC express NOS by themselves, but the principal question remained unanswered, is the NO generation by VSMC physiologically relevant? We hypothesized that the destruction of the vascular wall anatomical integrity by rubbing off the endothelial layer might increase vascular superoxides that, in turn, reduced the NO bioactivity as a relaxing factor. To test our hypothesis, we examined ACh-induced vasorelaxation under protection against oxidative stress and found that superoxide scavengers restored vasodilatory responses to ACh in endothelium-deprived blood vessels. These findings imply that VSMC can release NO in amounts sufficient to account for the vasorelaxatory response and challenge the concept of the obligatory role of endothelial cells in the relaxation of arterial smooth muscle.  相似文献   

6.
动脉粥样硬化的发生发展是一个复杂的过程,涉及到多种细胞及细胞因子的相互作用.平滑肌细胞作为血管壁的重要成分,调节着血管的收缩舒张功能,同时也分泌多种细胞因子及细胞间质;它的生物学行为对动脉粥样硬化的发生、发展及最终的结局产生着重要的影响.本文就平滑肌细胞的生物学行为的变化及其在动脉粥样硬化的不同发展阶段的作用进行综述.  相似文献   

7.
The aim of this review is to summarize some current concepts on the membrane mechanisms of energy-dependent Ca2+ transport in the smooth muscles. The emphasis is placed on the properties and mechanisms of regulation of plasma membrane and endoplasmic reticulum calcium pumps, sarcolemmal sodium/calcium exchanger and mitochondrial Ca2+ transport.  相似文献   

8.
The effect of lysolecithin (lysophosphatidylcholine) on the relaxation of rabbit aortic strip closely resembled that produced by acetylcholine (ACh) which releases the endothelium-derived relaxing factor (EDRF). Relaxation induced by lysolecithin depended on the presence of endothelium and was inhibited by hemoglobin and methylene blue. It appeared to be mediated by the second messenger, c-GMP. Lysolecithin induced relaxation was slower but more persistent than that resulting from the endothelium-derived relaxing factor (EDRF) produced by acetylcholine (ACh). Like lysolecithin, Triton X-100, a non-ionic detergent, also preferentially relaxed aortic strips with intact endothelium. The results demonstrate the importance of phospholipids derived from cell membranes in vascular smooth muscle relaxation. Endothelium-derived relaxing factors appear as a group of heterogeneous substances.  相似文献   

9.
Abstract

Mechanisms of hypoxia-related angiogenesis are important for uterine smooth muscle tumors. Factors that are related to angiogenesis during hypoxia include vascular endothelial growth factor (VEGF), hypoxia inducible factor 1α (HIF1α), T-cell intracellular antigen1 (TIA1), eukaryotic translation initiation factor 2α (eIF2α) and thrombospondin 1 (TSP1). We investigated immunoreactivities of VEGF, HIF1α, TIA1, eIF2α and TSP1 using an indirect immunoperoxidase method for formalin fixed, paraffin embedded tumors that had been diagnosed as leiomyoma (LMY), cellular leiomyoma (CLM) or leiomyosarcoma (LMS). TSP1 immunoreactivity was scored as moderate, mild or minimal, while VEGF, eIF2α and TIA1 immunoreactivities were scored as mild, moderate and strong in LMY, CLM and LMS samples, respectively. HIF1α immunoreactivity was scored as mild to minimal in LMY, CLM and LMS samples, but showed no statistically significant differences among samples. Although angiogenic factors showed strong immunohistochemical staining intensity in LMS, anti-angiogenic factors showed minimal immunohistochemical intensity. There was no difference in HIF-1α immunoreactivity compared to LMY, CLM and LMS samples. We suggest that HIF1α protein synthesis could be suppressed by eIF2α and TIA1. Furthermore, VEGF could be activated by pathways such as COX2, Ras, NF-?B or c-myc instead of HIF1α. Angiogenesis could trigger and accelerate tumor development; therefore, anti-angiogenic therapy could be useful for treatment of tumors.  相似文献   

10.
Li ZL  Jiang SZ 《生理科学进展》2005,36(4):341-344
近年来有关平滑肌收缩的钙敏化机制研究进展迅速,一系列的证据显示这种Ca2 非依赖的调节主要是由RhoA-ROK通路介导,它主要通过磷酸化抑制肌球蛋白轻链磷酸酶(MLCP)的活性来增加肌球蛋白轻链(MLC)的磷酸化水平,从而增强平滑肌的收缩力。越来越多的研究显示RhoA-ROK通路参与了平滑肌细胞和非肌细胞的多种功能,在许多疾病如高血压、动脉粥样硬化、冠状动脉痉挛等的发生和发展中起着非常重要的作用。  相似文献   

11.
Methylglyoxal (MG), a highly reactive metabolite of glucose, causes non-enzymatic glycation of proteins to form irreversible advanced glycation endproducts (AGEs). The present study investigated whether methylglyoxal induced oxidative stress and activated nuclear factor kappa B (NF-kappaB) in freshly isolated and cultured smooth muscle cells (SMCs) from rat mesenteric artery. The treatment of cells with MG (50 or 100 micromol/L) induced a significant increase in AGE formation and oxidation of DCF. MG-enhanced generation of AGEs and the oxidation of DCF was markedly inhibited by antioxidant n-acetylcysteine (NAC, 600 micromol/L). MG at a concentration of 100 micromol/L increased the heme-oxygenase-1 expression in these cells. Moreover, MG activated NF-kappaB p65, indicated by an increased immuno cytochemistry stain for NF-kappaB p65 located in the nucleus after the treatment of mesenteric artery SMCs with MG. MG-induced activation of NF-kappaB p65 was inhibited by NAC. In summary, MG significantly increases oxidative stress and activates NF-kappaB p65 in mesenteric artery SMCs. The pro-oxidant role of methylglyoxal may contribute to various pathological changes of SMCs from resistance arteries.  相似文献   

12.
TRPP2 channel protein belongs to the superfamily of transient receptor potential(TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca~(2+) release from Ca~(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca~(2+) imaging and tension measurements to test agonist-induced intracellular Ca~(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol(CCh)-evoked Ca~(2+) release and extracellular Ca~(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor(IP3) production, and 2-aminoethoxydiphenyl borate(2APB), which inhibits IP3 recepor(IP3R) to abolish IP3R-mediated Ca~(2+) release. To confirm the role of Ca~(2+) release in CCh-induced gallbladder contraction, we used thapsigargin(TG)-to deplete Ca~(2+) stores via inhibiting sarco/endoplasmic reticulum Ca~(2+)-ATPase and eliminate the role of store-operated Ca~(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L~(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca~(2+) release from intracellular Ca~(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.  相似文献   

13.
14.

Background

As a key subunit of the exocyst complex, Exo70 has highly conserved sequence and is widely found in yeast, mammals, and plants. In yeast, Exo70 mediates the process of exocytosis and promotes anchoring and integration of vesicles with the plasma membrane. In mammalian cells, Exo70 is involved in maintaining cell morphology, cell migration, cell connection, mRNA splicing, and other physiological processes, as well as participating in exocytosis. However, Exo70’s function in mammalian cells has yet to be fully recognized. In this paper, the expression of Exo70 and its role in cell migration were studied in a rat vascular smooth muscle cell line A7r5.

Methods

Immunofluorescent analysis the expression of Exo70, α-actin, and tubulin in A7r5 cells showed a co-localization of Exo70 and α-actin, we treated the cells with cytochalasin B to depolymerize α-actin, in order to further confirm the co-localization of Exo70 and α-actin. We analyzed Exo70 co-localization with actin at the edge of migrating cells by wound-healing assay to establish whether Exo70 might play a role in cell migration. Next, we analyzed the migration and invasion ability of A7r5 cells before and after RNAi silencing through the wound healing assay and transwell assay.

Results

The mechanism of interaction between Exo70 and cytoskeleton can be clarified by the immunoprecipitation techniques and wound-healing assay. The results showed that Exo70 and α-actin were co-localized at the leading edge of migrating cells. The ability of A7r5 to undergo cell migration was decreased when Exo70 expression was silenced by RNAi. Reducing Exo70 expression in RNAi treated A7r5 cells significantly lowered the invasion and migration ability of these cells compared to the normal cells. These results indicate that Exo70 participates in the process of A7r5 cell migration.

Conclusions

This research is importance for the study on the pathological process of vascular intimal hyperplasia, since it provides a new research direction for the treatment of cardiovascular diseases such as atherosclerosis and restenosis after balloon angioplasty.
  相似文献   

15.
Vascular NADPH oxidases have been shown to be a major source of reactive oxygen species (ROS). Recent studies have also implicated ROS in the proliferation of vascular smooth muscle cells. However, the components required for activation of the NADPH oxidase complex have not been clearly elucidated. Here we demonstrate that ROS generation in ovine pulmonary arterial smooth muscle cells (PASMCs) requires the activation of Rac1, implicating this protein as an important subunit of the NADPH oxidase complex. Our results, using a geranylgeranyl transferase inhibitor (GGTI-287), demonstrated a dose-dependent inhibition of Rac1 activity and ROS production. This was associated with an inhibition of PASMC proliferation with an arrest at G(2)/M. The inhibition of Rac1 by GGTI-287 led us to more specifically target Rac1 to investigate its role in the generation of ROS and cellular proliferation. To accomplish this, we utilized a dominant negative Rac1 (N17Rac1) and a constitutively active Rac1 (V12Rac1). These two forms of Rac1 were transiently expressed in PASMCs using adenovirus-mediated gene transfer. N17Rac1 expression resulted in decreased cellular Rac1 activity, whereas V12Rac1 infection showed increased activity. Compared with controls, the V12Rac1-expressing cells had higher levels of ROS production and increased proliferation, whereas the N17Rac1-expressing cells had decreased ROS generation and proliferation and cell cycle arrest at G(2)/M. However, the inhibition of cell growth produced by N17Rac1 overexpression could be overcome if cells were co-incubated with the Cu,Zn superoxide dismutase inhibitor DETC. These results indicate the importance of Rac1 in ROS generation and proliferation of vascular smooth muscle cells.  相似文献   

16.
17.
18.
Vascular smooth muscle cell proliferation and migration play an important role in the pathophysiology of several vascular diseases, including atherosclerosis. Prostaglandins that have been implicated in this process are synthesized by two isoforms of cyclooxygenase (COX), with the expression of the regulated COX-2 isoform increased in atherosclerotic plaques. Bradykinin (BK), a vasoactive peptide increased in inflammation, induces the formation of prostaglandins through specific receptor activation. We hypothesized that BK plays an important role in the regulation of COX-2, contributing to the increase in production of prostaglandins in vascular smooth muscle cells. Herein we examined the signaling pathways that participate in the BK regulation of COX-2 protein levels in primary cultured aortic vascular smooth muscle cells. We observed an increase in COX-2 protein levels induced by BK that was maximal at 24 h. This increase was blocked by a B2 kinin receptor antagonist but not a B1 receptor antagonist, suggesting that the B2 receptor is involved in this pathway. In addition, we conclude that the activation of mitogen-activated protein kinases p42/p44, protein kinase C, and nitric oxide synthase is necessary for the increase in COX-2 levels induced by BK because either of the specific inhibitors for these enzymes blocked the effect of BK. Using a similar approach, we further demonstrated that reactive oxygen species and cAMP were not mediators on this pathway. These results suggest that BK activates several intracellular pathways that act in combination to increase COX-2 protein levels. This study suggests a role for BK on the evolution of the atheromatous plaque by virtue of controlling the levels of COX-2.  相似文献   

19.
Fameli N  Breemen Cv 《Protoplasma》2012,249(Z1):S39-S48
We address the importance of cytoplasmic nanospaces in Ca(2+) transport and signalling in smooth muscle cells and how quantitative modelling can shed significant light on the understanding of signalling mechanisms. Increasingly more convincing evidence supports the view that these nanospaces--nanometre-scale spaces between organellar membranes, hosting cell signalling machinery--are key to Ca(2+) signalling as much as Ca(2+) transporters and Ca(2+) storing organelles. Our research suggests that the origin of certain diseases is to be sought in the disruption of the proper functioning of cytoplasmic nanospaces. We begin with a historical perspective on the study of smooth muscle cell plasma membrane-sarcoplasmic reticulum nanospaces, including experimental evidence of their role in the generation of asynchronous Ca(2+) waves. We then summarize how stochastic modelling approaches have aided and guided our understanding of two basic functional steps leading to healthy smooth muscle cell contraction. We furthermore outline how more sophisticated and realistic quantitative stochastic modelling is now being employed not only to deepen our understanding but also to aid in the hypothesis generation for further experimental investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号