首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compression wood is formed at the underside of conifer twigs to keep branches at their equilibrium position. It differs from opposite wood anatomically and subsequently in its mechanical and hydraulic properties. The specific hydraulic conductivity (ks) and vulnerability to drought‐induced embolism (loss of conductivity versus water potential ψ) in twigs of Norway spruce [Picea abies (L.) Karst.] were studied via cryo‐scanning electron microscope observations, dye experiments and a newly developed ‘Micro‐Sperry’ apparatus. This new technique enabled conductivity measurements in small xylem areas by insertion of syringe cannulas into twig samples. The hydraulic properties were related to anatomical parameters (tracheid diameter, wall thickness). Compression wood exhibited 79% lower ks than opposite wood corresponding to smaller tracheid diameters. Vulnerability was higher in compression wood despite its narrower tracheids and thicker cell walls. The P50 (ψ at 50% loss of conductivity) was ?3.6 MPa in opposite but only ?3.2 MPa in compression wood. Low hydraulic efficiency and low hydraulic safety indicate that compression wood has primarily a mechanical function.  相似文献   

2.
Acer platanoides L. individuals were dissected to determine if branch allometry changed as branches increased in length. Branches were found to transition from a log–log curvilinear relationship to a linear relationship when above 3,000 mm in length. The log–log linear relationship was best modeled with the elastic similarity model. The total number of subordinate lateral branches was found to increase rapidly after the primary branch length surpassed 3,000 mm, suggesting that branches are transitioning to a structural role as size increases. The shift in allometry appears to correspond to a shift from increasing slenderness ratio (length/radius) with increasing branch length to decreasing ratio, and is likely due to a transition from flexible sun branches to stiffer structural branches.  相似文献   

3.
Multiple lateral branching (MLB) is a quantitatively inherited trait associated with yield in cucumber (Cucumis sativus L.; 2n = 2x = 14). Although quantitative trait loci (QTL) have been identified for MLB and QTL-marker associations have been verified by marker-assisted selection, the individual effects of these QTL have not been characterized. To test the effects of pyramiding QTL for MLB, molecular genotyping was utilized to create two sets (standard- and little-leaf types) of inbred backcross (IBC) lines possessing various numbers of QTL that promote branching. These IBC lines were evaluated for lateral branch number in two Wisconsin environments at three plant densities. Highly significant differences in the number of primary lateral branches were detected between spacings, leaf types, and lines, but not between locations. Lateral branch number decreased at higher plant densities in all genotypes, while genotype by environment and QTL by environment interactions were marginally non-significant. As the number of QTL increased among IBC lines, the number of branches did not generally change in the little-leaf lines, but decreased in the standard-leaf lines, demonstrating an epistatic effect related to genetic background during lateral branch development. The genomic location with the greatest effect on MLB was confirmed as the QTL that was previously mapped near the little-leaf locus (ll), while the addition of one specific QTL consistently decreased the number of lateral branches in standard-leaf lines. Although pyramiding QTL for MLB did not uniformly increase the number of lateral branches, pyramiding QTL in IBC lines allowed further characterization of individual QTL involved in MLB. Our results, coupled with those of previous studies indicate that lateral branch development in cucumber is determined by growing environment (i.e., plant spacing), genetic background, and QTL composition.  相似文献   

4.
Apical control is the suppression of growth in lower branches by a higher dominant branch or leader shoot. We investigated possible mechanisms involved in this developmental response in three widely diverse species (Japanese morning glory, Ipomoea nil, hybrid poplar, Populus trichocarpa, × P. deltoides, and Douglas-fir, Pseudotsuga menziesii). The following two hypotheses were tested: (1) the mineral nutrient-deprivation hypothesis, which is that the continued growth of the lower branches is repressed by the diversion of nutrients to the upper dominating branch or shoot, and (2) the auxin-repression hypothesis, which is that auxin produced in the upper dominating branch or shoot moves down to the lower branches where continued growth is repressed. The results of experiments involving the manipulation of available nutrients by dominant branch removal and fertilization were consistent with the first hypothesis for morning glory, poplar, and for second- or third flushing of lateral branches in Douglas-fir. The results of the experiments involving auxin (NAA, 1-naphthalene acetic acid) replacement treatments on decapitated shoots bearing growing lateral branches were inconsistent with the second hypothesis in morning glory, poplar and in first-flushing Douglas-fir. However, despite concerns about possible NAA toxic effects, there was evidence of auxin repression of second flushing in Douglas-fir. Overall, the data supported a significant role for nutrient availability but not for auxin repression in apical control of morning glory and poplar. In Douglas-fir, apical control in first-flushing lateral branches from over-wintered buds was largely insensitive to both nutrient availability and auxin repression; however, second flushing was sensitive to both.  相似文献   

5.
The geometry of tree branches can have considerable effect on their efficiency in terms of carbon export per unit carbon investment in structure. The purpose of this study was to evaluate different design criteria using data describing the form of Picea sitchensis branches. Allometric analysis of the data suggests that resources are distributed to favour shoots with the greatest opportunity for extension into new space, with priority to the extension of the leader. The distribution of allometric relations of links (branch elements) was tested against two models: the pipe model, based on hydraulic transport requirements, and a static load model based on the requirement of shoots to provide mechanical resistance to static loads. Static load resistance required the load parameter to be proportional to the link radius raised to the power of 4. This was shown to be true within a 95% statistical confidence limit. The pipe model would require total distal length to be proportional to link radius squared but the measured branches did not conform well to this model. The comparison suggests that the diameters of branch elements were more related to the requirements for mechanical load. The cost of following a hydraulic design principle (the pipe model) in terms of mechanical efficiency was estimated and suggested that the pipe model branch would not be mechanically compromised but would use structural resources inefficiently. Resource allocation among branch elements was found to be consistent with mechanical stability criteria but also indicated the possibility of allocation based on other criteria, such as potential light interception by shoots. The evidence suggests that whilst branch topology increments by reiteration of units of morphogenesis, the geometry follows a functional design pattern.  相似文献   

6.
An experimental study was undertaken to assess the extent to which better-situated branches correlatively inhibit other branches on the same plant which are growing in relatively inferior conditions. The experiments were carried out on naturally-grown Onobrychis squarrosa L. (Papilionaceae), a dominant annual plant of the Mediterranean region of Israel. Treatments were carried out (i) on young plants that only had a seminal shoot, and (ii) on plants after lateral branches had started growing. Differential shade conditions were achieved by the repeated removal of neighbours on one side of the plants. The plants were either left intact or damaged by removing different parts of their branch system. In intact plants, growth responses to the differential light conditions which were expressed by the number of branches, leaves and fruits showed some evidence for support of the shaded branches by the exposed branches on the same plant. In contrast, heterogeneous treatments of both shade and branch damaging led to development that reflected marked correlative inhibition of the shaded parts of the plant. The results show that a latent potential for correlative inhibition between branches exists throughout plant development and that in Onobrychis it can be readily realised when plants are damaged. This could depend on known traits of auxin acting as a correlative signal of growing branches. The observed responses of Onobrychis can be understood as an adaptive strategy which reflects the low reliability of environmental signals and the high cost of changing the course of development, especially in short-lived annual plants.  相似文献   

7.
Development of the cotyledonary region in Chamaesyce maculata is described from germination of the seed through formation of the dense mat of branches which characterize this common weed. The cotyledonary node is trilacunar with split-lateral traces. Epicotyl development is limited to a pair of leaves (“V-leaves”) inserted directly above and decussate to the cotyledons. The two V-leaves are also vascularized by three traces and insertion of these traces relative to the vasculature at the immediately subjacent cotyledonary node is asymmetrical; four of the six V-leaf traces arise on one side of the intercotyledonary plane and two arise on the opposite side. Further shoot development is limited to lateral branches that develop sequentially from cotyledonary axillary buds, and then from de novo buds which arise at bases of previously developed lateral branches. The first axillary bud to develop is located on that half of the seedling which supplies the V-leaves with four traces. Development or insertion of the third and fourth branches (first and second de novo branches) relative to the first and second (cotyledonary) branches occurs in two patterns, termed cis and trans. Subsequent de novo branches generally develop between the two most recently developed branches on that half of the seedling, gradually forming a large branch plexus at the cotyledonary region. In mature robust specimens, however, the sequence of lateral branch development may become irregular. Structure of the cotyledonary region of C. maculata does not readily support widely held concepts of homology between the pleiochasium of Euphorbia subgenus Agaloma and the lateral branch system of Chamaesyce.  相似文献   

8.
Two aspects of branch interaction in trees are investigated theoretically. In the first it is assumed that there is a controlling factor in which the proximity of neighboring terminal branch units influences their branching capability. The almost horizontal tiers of lateral branches of Terminalia catappa L. and Cornus alternifolia L. are simulated by computer using values based on the measured branch geometries of real trees. For branch interaction, we assume a horizontal circle of inhibition whose center is the existing terminal point of a branch. If the end point of another branch extends into the circle, the original branch fails to bifurcate. Examples of computer simulated patterns are illustrated using different degrees of interference and are compared with branch tiers in T. catappa. In the second model the ability of a terminal branch unit to bifurcate is considered to be determined by the accumulation of a critical amount of a hypothetical growth- or bifurcation-determining factor. The daughter branches of a bifurcation are assumed to have differing “flow rates,” i.e., the factor is distributed in different amounts between different daughter axes. Some simulated patterns generated by this model are very similar to real patterns found in T. catappa and an unnamed species of Tabernaemontana. In both simulations bifurcation ratios are determined and are shown to be a variable, not a fixed, property of the simulated trees.  相似文献   

9.
Single lateral branches and branch tiers of Terminalia catappa L. are simulated and drawn by computer. Leaf clusters on the branches are approximated by discs, and the effective leaf areas are determined by use of Dirichlet domains. Theoretical optimal branching angles which produce the maximum effective leaf area are obtained from simulations. Symmetrical and asymmetrical branching angles are contrasted; the latter characterize real trees. Varying leaf disc radius and ratio of branch-unit lengths affects optimal branching angles, as does the symmetry of a tier of five branches. Leaf area indices for individual branches and branch tiers are given for all simulations. The number of branches in a tier has a major effect on leaf area index and effective leaf area. The theoretical optimal branching angles of many simulations are very close to the values observed in real trees of T. catappa. We conclude that the observed branching angles and number of branches in a tier of this species optimize light interception within constraints of a fixed pattern of branching, one that is widespread among tropical trees.  相似文献   

10.
The concentrations of indole-3-acetic acid (IAA), cytokinins (CK) and abscisic acid (ABA) were measured in buds of different regions (main stem and lateral branches) of Lupinus angustifolius L. (cv. Merrit) and at different stages in the development of branches. In lupin, branching patterns are the result of discrete regions of axillary branches (upper, middle and basal) which elongate at much different rates. Early in development only the main shoot elongates, followed usually by basal branch growth and then rapid upper branch growth. Branches in the middle of the main stem grow only weakly or fail to develop. Levels of IAA were generally high in the apical buds of slowly growing branches and low in buds from strongly growing branches, whereas CK levels showed the opposite relationship. CK:IAA ratio showed a closer relationship with the rate of growth of a particular branch better than the levels of either CK or IAA alone. During early stages of growth ABA concentration did not follow the rate of branch growth. However, later in development, where growth did not closely match the ratio of CK:IAA, ABA level showed a strong negative relationship with growth. A significant decrease in ABA was associated with continued strong growth of the main stem apex following a decline in CK:IAA ratio. Overall, the best relationship between the level of growth factors in apical buds and branching pattern in lupin was the ratio of CK:IAA, implying that high CK:IAA at a given bud would promote growth. ABA level appeared to play a secondary role, as a growth inhibitor.  相似文献   

11.
This study examined Leonardo da Vinci''s rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci''s rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci''s rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci''s rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci''s rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci''s rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci''s rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci''s rule.  相似文献   

12.
Patterns in branch permeability with crown depth and permeability at the top of the main stem were analyzed for loblolly pine (Pinus taeda L.) trees from families selected on the basis of growth rate (fast, slow) and crown size (large, small). Analysis of variance with levels of crown size nested within levels of growth rate was used to test for differences in main stem permeability. Permeability at the top of the stem averaged 2.0×10–12 m2. There were no significant differences in permeability between families selected for fast and slow growth, but permeability was significantly lower for families selected for large crowns than for families selected for small crowns. Branch permeability averaged 0.74×10–12 m2 and decreased significantly with crown depth. Large-crown families had higher overall branch permeability than small-crown families. Average permeability in branches did not differ significantly between fast- and slow-growing families. Large crown-families had significantly larger current leaf area: total leaf area ratios in the lower two-thirds of the crown, and a weak but significant association was found between permeability and current leaf area: total leaf area ratios for a given relative crown depth. Our results suggest that ecotypic and adaptive processes simultaneously affect the overall patterns of stem and branch permeability in loblolly pine families.  相似文献   

13.
14.
A chimeric plant was observed in the F2 generation of a cross between a mutant cultivar, Ife BPC, and a germplasm line, TVu 2, in cowpea, Vigna unguiculata (L.) Walp. The chimeric plant had four lateral branches, one of which was intensely variegated, while the others were mostly green with few white sectors. F3 progeny from the intensely variegated branch of this plant were all variegated, while seed derived from the mostly green branches produced only green progeny. In subsequent generations, the descendants of the variegated branch bred true for the variegated trait, while those of the mostly green branches were also true-breeding for green colour. No pure-green or pure-white shoots were observed in any of the variegated plants examined in this study. Consequently, no pure-green or pure-white seedlings were produced from seeds harvested from the variegated plants. The results of reciprocal crosses between variegated and normal green plants indicate that variegation is inherited in a strictly uniparental maternal fashion. This is the first report of a cytoplasmically inherited mutation affecting foliage colour in cowpea. Received: 10 March 2000 / Accepted: 16 May 2000  相似文献   

15.
Infestation of Acacia acuminata by the xylem-tapping mistletoe Amyema preissii invariably results in inhibition of growth, defoliation and eventual death of host branch parts distal to the mistletoe. Branch sectional areas proximal (P) and distal (D) to mistletoes are used to classify stages of parasitism, with P:D area ratios of 5–6 invariably associated with distal branch senescence. As monopolization of the branch proceeds, mistletoe leaf area increases in parallel with declining host foliage area, and the specific hydraulic conductivity of distal host wood declines sharply relative to that of proximal wood, mineral composition and concentrations of nitrogenous solutes in xylem sap are at no stage appreciably different from those of proximal wood. After the demise of the distal branch parts, the transectional area of the host branch stump increases linearly with increasing mistletoe leaf area, the branch area supporting a unit of mistletoe leaf area always being about 3 times greater than that supporting a unit of host foliage area on unparasitized branches. This differential, compounded with high transpiration rates and selective uptake of host xylem solutes by the haustorium, fosters substantial mineral enrichment of the mistletoe relative to its host. The study provides a background for future investigation of possible cellular mechanisms continuously driving structural and functional changes in favour of the mistletoe.  相似文献   

16.
辽东栎林内不同小生境下幼树植冠构型分析   总被引:1,自引:0,他引:1  
以黄土高原黄龙山林区辽东栎林内3个小生境(林下、林隙、林缘)下辽东栎天然更新幼树为研究对象,采用典型抽样法对辽东栎幼树侧枝、叶片和树冠的空间分布状况以及生物量分配状况进行调查分析,探讨微生境与幼树植冠构型特征的关系,明确辽东栎幼树对不同小生境的适应策略,为栎林经营和林分结构优化提供理论依据。结果显示:(1)3种生境下辽东栎幼树构型发生了可塑性变化,林下幼树树冠层次比较单一,林隙与林缘的幼树树冠层次更加丰富。(2)由林下至林缘,幼树的树高、枝下高呈逐渐减小的趋势,而地径变化趋势与之相反;幼树的冠幅、树冠面积、树冠率呈先增加后减小的趋势,并且林下与林隙、林缘的差异显著;幼树的总体分枝率、逐步分枝率、枝径比呈先增加后减小的趋势。(3)3种生境下,幼树的一级枝的枝长、直径与倾角随着树高的增加而呈减小的趋势,但3种生境的差异不显著;林下一级枝主要分布在冠层中上部,而林隙与林缘一级枝主要分布在冠层中下、中上部。(4)由林下至林缘幼树叶长、叶宽、单叶面积和比叶面积逐渐降低,而单株叶数、叶总面积、叶面积指数呈先增大后减小趋势;与其他2种生境相比林下叶片分布趋于冠层上部。(5)幼树地上部分生物量中林下主干生物量占83%,枝和叶生物量只占17%;而林隙与林缘虽然各部位生物量有所差异但比例基本一致,其中主干占66%左右,枝和叶生物量占34%左右。研究表明,林隙生境下幼树的构型优于林缘和林下生境,在今后栎林的经营中,可以通过适当间伐来增加林隙数量,为森林更新和结构的优化提供有利条件。  相似文献   

17.
Lack of annual growth ring production at the base of branches in the lower portion of the crown is a commonly observed phenomenon. In this study, branches with missing rings were found on 47 of 49 Abies lasiocarpa trees sampled. The number of missing rings on the lowest live branch in the crown averaged 12, and ranged as high as 28. The lower one-third of the live crown tended to consist of branches without rings; these branches contained an average of 30% of the total crown leaf area. The ratio of foliage weight to total branch weight, in combination with position of the branch in the canopy, was an effective discriminator of non-ring producing branches. This suggests that both structural and environmental factors influence the cessation of ring production. The potential ecological implications of branches that fail to produce rings are discussed.  相似文献   

18.
596 waterlogged, uncarbonized branch wood specimens from four cultural layers of the late Neolithic lake shore site of Horgen Scheller (between 3080 and 3030 B.C.) on Lake Zilrich, Switzerland, were examined. The following parameters were analysed: taxonomy, diameter and age of the twigs, cutting season, and distribution of the branches over the area as well as their distribution in the different cultural layers. The twigs were divided into the following three groups, based on differences observed in these analyses: conifers, deciduous trees with catkins, and deciduous trees without catkins. Branch diameter examinations revealed that branches of deciduous trees were thicker on average than those of conifers. While branches from deciduous trees without catkins were gathered at the age of seven years on average, those of conifers and deciduous trees with catkins were older. Waney edge analyses showed that the majority of the twigs were cut within the winter months. Among the deciduous trees without catkins there is, however, a markedly higher proportion of branches cut in summer than in the other two groups. The taxonomic examinations demonstrated that 70% of the specimens consisted of twigs of eitherCorylus avellana L. (hazel),Taxus baccata L. (yew), orAbies alba Mill. (silver fir), thus implying the great economic importance of these species in the settlements of Horgen Scheller. To our knowledge this is the first report that a remarkably high proportion of yew twigs (26.8%) has been found in an analysis of subfossil twigs. The possibility is discussed that the inhabitants had specialized in obtaining yew from the region. Concentrations of wood finds, possible remains of buildings, became evident from the analyses of the distribution of the branch wood over the excavated area. A very similar spatial distribution pattern of the taxa was found through the different cultural layers. Therefore it seems likely that existing structures were reused when a new settlement was built. The data also show that the building outlines slowly moved towards land over time. A rising lake water level could have led to gradual dislocation of the settlements.  相似文献   

19.
Land plants have evolved a large number of growth forms and each plant species has a unique morphology. For many tall plants, main stems serve the function of vertical growth while primary and higher order branches are responsible for lateral growth for greater light interception. Herein we search for a mechanical constant for primary branches. Primary branches were sampled from 40 species of trees and shrubs. Among the species sampled, branch lengths ranged from 1.8 to 12.2 m, weights from 0.056 to 16.6 kg, base diameters from 17 to 150 mm, bending moments from 7.1 to 2,200 N-m, and section moduli from 0.039 to 29.0 × 10−3 m3. Primary branches of all 40 tree and shrub species exhibited relatively constant bending stresses along each branch. Moreover stress values among the 40 species were relatively constant at about 11 MPa (mean = 11.1 MPa [range 5.2–18.9]; standard deviation = 3.3 MPa). Furthermore, primary branches without secondary branches attached (1) had similar bending moment distributions as tapered cantilever beams, (2) exhibited relatively constant slope values of stress versus length among all species (stresses increased linearly with length), and (3) exhibited both relatively constant density and relatively constant taper within each species. We conclude that the relatively constant stress of about 11 MPa of primary branches was due solely to the numbers, weights, and distributions of secondary branches and associated higher order branches along primary branches for the 40 plant species. To our knowledge, this is the first publication that shows a unifying mechanical constant for primary branches of plants.
Lance S. EvansEmail:
  相似文献   

20.
Water relations and gas exchange were studied in the crowns of small European larch (Larix decidua Mill.) trees with respect to branch position. The upper-crown branches showed significantly higher branch sap flux rate (F la) and branch conductance (g b) compared to the lower crown (P<0.001). Values of leaf conductance (g l), transpiration rate (E) and net photosynthesis (A), averaged for different ranges of atmospheric vapour pressure deficit (VPD), were also higher in the upper crown position. We suppose that the up to 2.6-fold smaller soil-to-leaf hydraulic conductance observed in the lower branches (P<0.001, compared to upper branches) could contribute to the decreased values of F la, g b, g l, and E in the lower crown position. Variation in tracheid lumen diameter with respect to crown position (P<0.001) supported the hypothesis that branches growing at the crown base are hydraulically more constrained than branches located at the top of the tree. Leaf area to sapwood area ratio (A la/A sa) exhibited 1.4 times smaller values in lower crown (P<0.01), however, this could not compensate the effect of decreased hydraulic conductivity of the lower-crown branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号