首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The factors affecting the rate of nitrate reduction and the nitrate reductase content in Selenomonas ruminantium were examined. The rate of nitrate reduction per cell mass was higher when S. ruminantium was grown on lactate than when grown on glucose, and the rate was further enhanced when grown on succinate. The nitrate reduction rate was parallel to the nitrate reductase content in cells, suggesting that the amount of nitrate reductase limits the rate of nitrate reduction. The amount of nitrate reductase was inversely related to growth rate. The growth rate was related to the level of intracellular ATP, which was inversely related to the levels of ADP and AMP. The ratio of NADH to NAD+was related to the rate of nitrate reduction and to the amount of nitrate reductase. From these results, it is conceivable that the synthesis of nitrate reductase is regulated in response to the sufficiency of energy and electron supply. Intracellular concentrations of adenine nucleotides and pyridine nucleotides may be the regulating factors. The amount of nitrate reductase was increased by the presence of nitrate, suggesting that the synthesis of nitrate reductase is enhanced by nitrate. In addition, nitrate reduction altered the fermentation pattern as a result of electron consumption.  相似文献   

2.
J. E. Reed  R. Chollet 《Planta》1985,166(4):439-445
The concentrations of 17 nucleotides and three nucleosides have been determined in a batch suspension culture of Datura innoxia using a new procedure for extraction, purification and high-performance liquid chromatography separation of these compounds. The nucleotide pools change appreciably in the different phases of growth. These changes indicate the preparation for and initiation of cell proliferation, and reflect metabolic events during cell division, cell elongation and starvation. The main components of the nucleotide pool are uracil nucleotides, with uridine 5-diphosphate sugars as the predominant fraction, and the adenine nucleotides. Although their concentrations vary by a factor of more than 6 the ratio of the uracil to adenine nucleotides is kept fairly constant during growth. The energy charge is maintained at a rather high value. The correlation of these events with nutrient uptake and macromolecular synthesis by the batch culture is presented in the following paper.Abbreviations Glc glucose - GlcNAc 2-acetamido-2-deoxy-d-glucose - HPLC high performance liquid chromatography - UDP uridine 5-diphosphate  相似文献   

3.
Metabolic changes during cell growth inhibition by p27 overexpression   总被引:2,自引:0,他引:2  
The overexpression of p27, a cyclin-dependent kinase (CDK) inhibitor, has been shown to effectively inhibit cell growth at the G1-phase of different cell lines, potentiating a valid genetic strategy for cell proliferation control. In order to characterize the energy requirements after p27 overexpression in CHO cells expressing SEAP (secreted form of the human alkaline phosphatase enzyme), key metabolic parameters were evaluated. Cell growth inhibition led to a significant increase in cell size concomitant with a 2-fold increase in cell protein content. The simultaneous increase of the intracellular proteolytic activity with protein content suggests higher protein synthesis. A general 2-fold increase in oxygen, glutamine and glucose consumption rates, coupled with an increase in lactate and ammonia production was observed. p27 overexpression led to a significant increase in the intracellular pool of AMP (8.5-fold), ADP (6-fold) and, more uncommonly, ATP (4.5-fold). Nevertheless, cells were able to maintain the equilibrium among the three adenine nucleotides since both the ATP/ADP ratio and the energy charge values remained similar to those observed with non-growth inhibited cells. This work shows that the observed 4-fold increase in SEAP specific productivity after cell growth inhibition by p27, occurred concomitantly with a higher expenditure of cell energy. This characterization of cell metabolism becomes important in demonstrating the applicability of growth inhibition systems.  相似文献   

4.
Incubation of L1210 leukemia cells with 10 μM [3H]adenine in the absence of energy substrate results in a very rapid accumulation of 3H within the cells. By 20 s intracellular adenine is near steady-state; beyond this the rate of accumulation of intracellular 3H reflects nucleotide synthesis, predominantly the rate of ATP accumulation within the cell as determined by liquid chromatography. Adenine incorporation into the nucleotides proceeds via adenine-phosphoribosyl transferase, which is rate-limiting to AMP formation and subsequently the formation of ADP and ATP. Acceleration of this pathway by the addition of glucose and phosphate decreases the intracellular adenine level far below equilibrium as metabolism is increased relative to transport. Assessment of methodology to evaluate intracellular adenine and its metabolites indicates that (i) a 4°C wash removes the major portion of intracellular adenine and (ii) at 4°C, transport of adenine remains rapid and while nucleotide synthesis is decreased, ATP still accumulates within the cell. Hence, measurement of cellular uptake of radioactive label at 4°C after cells are washed free of adenine cannot be used as a measurement of adenine surface binding since this radioactive label represents, at least in part, phosphorylated derivatives of adenine within the cell. Unlabeled adenine and structurally related compounds were found to inhibit [3H]adenine net uptake under conditions where metabolism of adenine was reduced, suggesting that base transport is mediated by a facilitated diffusion mechanism. This is consistent with other studies from this laboratory that demonstrate exchange diffusion between adenine and other bases.  相似文献   

5.
The quantitative comprehension of microbial metabolic networks is a prerequisite for an efficient rational strain improvement ("metabolic engineering"). It is therefore necessary to accurately determine the concentration of a large number of reactants (i.e., metabolites, nucleotides, cofactors) in order to understand "in vivo" reaction kinetics. Quantification of intracellular concentrations of glycolytic intermediates and nucleotides in Escherichia coli K12 using a perchloric acid extraction and an LC-ESI-MS method was achieved. Intracellular metabolites (e.g., glucose 6-phosphate, fructose 1,6-bisphosphate, 6-phospho gluconate, acetyl-CoA, adenine nucleotides) were quantified under defined (glucose-limited steady-state) growth conditions. The method was verified by comparing the intracellular metabolite concentrations measured via LC-ESI-MS with enzymatic determinations. It is thus possible to identify and quantify more than 15 intracellular metabolites in parallel with a minimal amount of sample volume.  相似文献   

6.
Changes in respiratory activity and in the contents of adenine nucleotides (ATP, ADP, AMP) were studied in cells of the yeast Yarrowia lipolytica during the development of cyanide-resistant respiration. The transition of the yeast from the logarithmic to the stationary growth phase due to exhaustion of glucose was associated with decreased endogenous respiration and with the activation of a cyanide-resistant oxidase. Cyanide activated cell respiration during the stationary growth phase. The cyanide-resistant respiration was inhibited by benzohydroxamic acid (BHA), an inhibitor of the alternative oxidase. In the absence of cyanide, BHA had no effect on the cells which had the cyanide-resistant oxidase. This indicates that the cells do not use the alternative pathway in vivo. The decreased endogenous respiration of the cells was accompanied by decreased contents of adenine nucleotides. Addition of cyanide resulted in a sharp decrease in the content of ATP, in a twofold increase in the content of ADP, and in a fivefold increase in the content of AMP. In the absence of cyanide, BHA had virtually no effect on the contents of adenine nucleotides. The decreased rate of oxygen consumption during the transition of the cells to the stationary growth phase was caused by the decreased activity of the main cytochrome-containing respiratory chain (2,4-dinitrophenol (DNP) stimulated respiration). The alternative oxidase was synthesized in the cell but was inactive. Cyanide stimulated respiration due to activation of the alternative oxidase via the AMP produced. The decrease in the cell content of ATP is suggested to be a factor inducing the synthesis of the alternative oxidase.  相似文献   

7.
The present investigation evaluates the effect of AICA-Riboside on the synthesis of purine nucleotides and the growth of normal rat kidney cells in culture. Experiments in the presence and absence of various concentrations of AICA-Riboside were conducted with Dulbecco's Modified Eagle's Medium supplemented with either 1 mM [15N]aspartate or [14N]aspartate. Addition of 50 microM AICA-Riboside to the incubation medium significantly stimulated intracellular adenine nucleotide concentrations following incubation for 48 hours. This stimulation was associated with augmented cell growth and DNA concentration. In contrast, with concentrations above 100 microM of AICA-Riboside in the incubation medium, there was a remarkable inhibition of cell growth and a significant depletion of intracellular pools of adenine nucleotides and DNA. Experiments with [15N]aspartate showed that the initial rate (0-24 hours) of [6-15NH2]adenine nucleotide formation from 1 mM [15N]aspartate was 38.8 +/- 9.6, 67.9 +/- 12.5, and 20.1 +/- 3.8 pmol h-1/10(6) cells in the presence of 0 (control), 50 microM and 500 microM AICA-Riboside, respectively. These observations indicate that the main effect of AICA-Riboside is on the formation of AMP from aspartate and IMP via the sequential action of adenylosuccinate synthetase and adenylosuccinate lyase. The current studies suggest that AICA-Riboside could be used as a factor mediating renal cell mitosis in culture. AICA-Riboside has a biphasic effect on the growth of renal epithelial cells in culture and on their intracellular purine nucleotides and DNA concentration.  相似文献   

8.
The degradation and short-term resynthesis of adenine nucleotides have been examined in a preparation of isolated rat heart myocytes. These myocyte preparations are essentially free of vascular and endothelial cells, contain levels of adenine nucleotides quite comparable to those of intact heart tissue, and retain these components remarkably well for up to 2 h of aerobic incubation in the presence of 1 mM Ca2+. When the cells are rapidly and synchronously de-energized by addition of uncoupler, an inhibitor of respiration and iodoacetate, cellular ATP is degraded almost quantitatively to AMP. The AMP is then converted to either intracellular adenosine, which accumulates to high concentrations before release to the cell exterior, or to IMP. The relative contribution of these two pathways depends on the metabolic state of the cells just prior to de-energization, with IMP production favored when respiring cells are de-energized and adenosine formation predominant when glycolyzing myocytes are subjected to this treatment. Cells de-energized by anaerobiosis in the absence of glucose lose ATP and adenine nucleotides with the production of IMP and adenosine. Upon reoxygenation, these cells restore a high adenylate energy charge and about 60% of control levels of GTP. There is a net resynthesis of 5-7 nmol of adenine nucleotides.mg-1 protein with a corresponding decline in IMP. Added [14C]adenosine labels the adenine nucleotide pool, but little net resynthesis of adenine nucleotides via adenosine kinase can be detected. It therefore appears that a rapid regeneration of adenine nucleotides can occur via the enzymes of the purine nucleotide cycle in heart myocytes and is limited by the size of the IMP pool retained.  相似文献   

9.
Filamentous fungi are able to spill energy when exposed to energy excess by uncoupling catabolism from anabolism, e.g. via overflow metabolism. In current study we tested the hypothesis that overflow metabolism is regulated via the energetic status of the hyphae (i.e. energy charge, ATP concentration). This hypothesis was studied in Penicillium ochrochloron during the steady state of glucose- or ammonium-limited chemostat cultures as well as during three transient states ((i) glucose pulse to a glucose-limited chemostat, (ii) shift from glucose-limited to ammonium-limited conditions in a chemostat, and (iii) ammonium exhaustion in batch culture). Organic acids were excreted under all conditions, even during exponential growth in batch culture as well as under glucose-limited conditions in a chemostat. Partial uncoupling of catabolism and anabolism via overflow metabolism was thus constitutively present. Under all tested conditions, overflow metabolism was independent of the energy charge or the ATP concentration of the hyphae. There was a reciprocal correlation between glucose uptake rate and intracellular adenine nucleotide content. During all transients states a rapid decrease in energy charge and the concentrations of nucleotides was observed shortly after a change in glycolytic flux (“ATP paradoxon”). A possible connection between the change in adenine nucleotide concentrations and the purine salvage pathway is discussed.  相似文献   

10.
Energy metabolism and intracellular adenine nucleotides of meiotic and postmeiotic spermatogenic cells are highly dependent on external substrates for oxidative phosphorylation and glycolysis. Using fluorescent probes to measure the changes in cytosolic [Ca2+] ([Ca2+]i) and pH (pHi), we were able to demonstrate that changes in energy metabolism of meiotic and postmeiotic spermatogenic cells were rapidly translated into changes of pHi and [Ca2+]i in the absence or presence of external Ca2+. Under these conditions, mitochondria were gaining cytosolic calcium in these cells. Our results indicate that Ca2+ mobilised by changes in metabolic energy pathways originated in thapsigargin-sensitive intracellular Ca2+ stores. Changes in intracellular adenine nucleotides, measured by HPLC, and a likely colocalization of ATP-producing and ATP-consuming processes in the cells seemed to provide the linkage between metabolic fluxes and the changes in pHi and [Ca2+]i in pachytene spermatocytes and round spermatids. Glucose metabolism produced an increase of [Ca2+]i in round spermatids but not in pachytene spermatocytes, and a decrease in pHi in both cell types. Hence, glucose emerges as a molecule that can differentially modulate [Ca2+]i and pHi in pachytene spermatocytes and round spermatids in rats.  相似文献   

11.
12.
1. Loading the isolated perfused liver from well-fed rats with xylitol (20mm) caused a depletion of adenine nucleotides and Pi and an accumulation of α-glycerophosphate. The ATP content fell to 66% of the control value after 10min and to 32% after 80min. The ADP and AMP contents also fell. After 80min 63% of the total adenine nucleotides and 59% of the Pi had been lost. 2. The α-glycerophosphate content rose from 0.13 to 4.74μmol/g at 10min and reached 8.02μmol/g at 40min. 3. Xylitol was rapidly metabolized, the main products being glucose, lactate and pyruvate. 4. The [lactate]/[pyruvate] ratio in the presence of xylitol rose to 30–40. 5. On perfusion of livers from starved animals the main product of xylitol metabolism was glucose and the mean ratio xylitol removed/glucose formed was 1.29 (corrected for endogenous glucose and lactate production). This is close to the predicted value of 1.2. 6. Evidence is presented indicating that the loss of adenine nucleotides caused by xylitol is not due to the increased ATP consumption but to the accumulation of α-glycerophosphate and depletion of Pi. 7. The loss of adenine nucleotides accounts for the hyperuricaemia which can occur after xylitol infusion in man. 8. The relevance of the findings to the clinical use of xylitol as an energy source is discussed.  相似文献   

13.
J.N. Hawthorne 《FEBS letters》1983,156(1):196-200
Adenine, cytidine and guanosine nucleotides were supplied to cultures of Rhodopseudomonas capsulata under aerobic heterotrophic and phototrophic growth conditions. Aerobic growth is not affected by exogenous nucleotides (up to 10 mM) whereas phototrophic growth is strongly inhibited by adenine but not by guanosine or cytidine nucleotides. During phototrophic growth there is an inverse relationship between the concentration of exogenous adenine nucleotides and photopigment synthesis. There are no statistically significant differences between the inhibitory effect of AMP, ADP and ATP on the growth rate and bacteriochlorophyll synthesis since adenine nucleotides are incorporated into the cell as AMP by means of the phosphoribosyl transferase system.  相似文献   

14.
Glycogen synthase activation by sugars in isolated hepatocytes   总被引:2,自引:0,他引:2  
We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.  相似文献   

15.
Homolactic fermentation of glucose and heterolactic fermentation of maltose with Lactococcus lactis 65.1 were confirmed. When moles of glucose were compared, the uptake rates of the two carbon sources were similar. The intracellular concentration of fructose-1,6-diphosphate (FDP) in maltose-assimilating cells was half of that in glucose-assimilating cells. Similarly, formation of FDP and lactate from maltose by extracts of maltose-grown cells was half of that formed from glucose by extracts of glucose-grown cells, indicating a difference in the utilization of the two carbon sources for energy metabolism. Concentrations of adenine nucleotides were similar in both types of cells. Glucose-1-phosphate was found in extracts of maltose-grown cells given maltose and, in addition, an inducible and low beta-specific phosphoglucomutase activity was observed. beta-Glucose-1-phosphate was not metabolized by cell extracts to either FDP or lactate, suggesting an alternative metabolic route. The amount of [C]maltose incorporated into the cell material of maltose-grown cells was four times greater than that of [C]glucose incorporated into the cell material of glucose-grown cells. The intracellular concentration of UTP was lower in maltose-assimilating cells than in glucose-assimilating cells. Cells grown on maltose were more spherical and less fragile than cells grown on glucose.  相似文献   

16.
The adenine nucleotides, 5'-AMP and 3',5'-cyclic AMP block L cells in the S-phase of the cell cycle. The intracellular level of cyclic AMP is reduced after incubation of cells with 5'-AMP, and rates of uridine transport are increased after incubation with either 5'-AMP or cyclic AMP. On the contrary, cyclic AMP levels are increased and uridine transport decreased in cells treated with an inhibitor of the cyclic AMP phosphodiesterase. This inhibitor partially reverses the growth-inhibitory effect of cyclic AMP, indicating that a breakdown product is the effective inhibitor of growth. The inhibition of cell growth induced by the adenine nucleotides is prevented by uridine, suggesting that the block in S is due to a lack of availability of pyrimidines.  相似文献   

17.
The present study investigated the effects of three constituent amino acids on glutathione production in flask culture of Candida utilis. Although l-glutamic acid and glycine had little impact on cell growth and glutathione biosynthesis, l-cysteine positively influenced glutathione production, despite inhibiting cell growth when it was added prior to stationary phase. Adding 8 mmol/L of l-cysteine to the culture broth at 16 h boosted glutathione production by 91%, increasing the intracellular glutathione content by 106% compared to untreated controls. A temperature-shift strategy, in which we shifted batch and fed-batch cultures of C. utilis from 30 to 26°C, also significantly enhanced glutathione production. Applying both strategies (i.e. adding 20 mmol/L l-cysteine and shifting the temperature from 30 to 26°C) at 33 h enhanced the glutathione concentration and the intracellular glutathione content to 1,312 mg/L and 3.75%, respectively, during fed-batch cultivation (glucose feeding at a constant rate of 18.3 g/h). The average specific glutathione production rate under this condition was 129% higher than that of the control without strategy.  相似文献   

18.
In addition to the well known effect of phenylhydrazine on red blood cells (methaemoglobin and Heinz body formation, autologous IgG binding, lipid peroxidation, etc.) an increased glucose utilization was observed. Measurement of 14CO2 formation from [1-14C]-glucose showed a maximum value at 2mM phenylhydrazine followed by a progressive inhibition on increasing the drug concentration to 16 mM. Concomitantly we found a reduction in the reduced glutathione concentration but not a corresponding increase in the level of oxidized glutathione. Phenylhydrazine also causes ATP depletion. The ATP is in part dephosphorylated to ADP and AMP and in part converted to inosine monophosphate and hypoxanthine. Measurement of the cell content of reduced and oxidized pyridine nucleotides was also performed and showed a progressive increase in the reduced forms of these coenzymes. Thus phenylhydrazine promotes cellular ATP depletion followed by adenine nucleotide catabolism that is not efficiently counteracted by an increase in glucose utilization. The relevance of these data to the mechanism of phenylhydrazine-induced anemia is discussed.  相似文献   

19.
In yeast, a sudden transition from glucose limitation to glucose excess leads to a new steady state at increased metabolic fluxes with a sustained decrease in the ATP concentration. Although this behaviour has been rationalized as an adaptive metabolic strategy, the mechanism behind it remains unclear. Nevertheless, it is thought that, on glucose addition, a metabolite derived from glycolysis may up-regulate ATP-consuming reactions. The adenine nucleotides themselves have been ruled out as the signals that mediate this regulation. This is mainly because, in that case, it would be expected that the new steady state at increased fluxes would be accompanied by an increased stationary ATP concentration. In this study, we present a core model consisting of a monocyclic interconvertible enzyme system. Using a supply-demand approach, we demonstrate that this system can account for the empirical observations without involving metabolites other than the adenine nucleotides as effectors. Moreover, memory is an emerging property of such a system, which may allow the cell to sense both the current energy status and the direction of the changes.  相似文献   

20.
The concentrations of reduced and oxidized glutathione and of adenine nucleotides were determined in liver, kidney and heart of rats during long-term (four weeks), high-dose therapy with cyclosporine A. In liver and kidney the concentration of oxidized glutathione increased following 4 weeks-therapy suggesting increased formation of free radicals and accelerated lipid peroxidation processes. These processes may be due to an increased activity of the cytochrome P-450 system. Compensatory levels of reduced glutathione were also increased. The adaptational increase of the tissue level of reduced glutathione, presumably the response to a chronic oxidative stress, was more distinct in the liver. The liver did not lose adenine nucleotides. In contrast the kidney, after 4 weeks of cyclosporine A therapy, lost 25% of the adenine nucleotides. These findings suggest that the liver is characterized by a greater potential for effective adaptation to oxidative stress conditions compared to the kidney. These adaptations may prevent distortions of energy and nucleotide metabolism in the liver which is in agreement with the minor ultrastructural changes we have observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号