首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multifunctional signal adapter protein Ras and Rab interactor 1 (RIN1) is a Ras effector protein involved in the regulation of epithelial cell processes such as cell migration and endocytosis. RIN1 signals via two downstream pathways, namely the activation of Rab5 and Abl family kinases. Protein kinase D (PKD) phosphorylates RIN1 at serine 351 in vitro, thereby regulating interaction with 14-3-3 proteins. Here, we report the identification of serine 292 in RIN1 as an in vivo PKD phosphorylation site. PKD-mediated phosphorylation at this site was confirmed with a phospho-specific antibody and by mass spectrometry. We demonstrate that phosphorylation at serine 292 controls RIN1-mediated inhibition of cell migration by modulating the activation of Abl kinases. We further provide evidence that RIN1 in vivo phosphorylation at serine 351 occurs independently of PKD. Collectively, our data identify a novel PKD signaling pathway through RIN1 and Abl kinases that is involved in the regulation of actin remodeling and cell migration.  相似文献   

2.
RIN1 was originally identified by its ability to inhibit activated Ras and likely participates in multiple signaling pathways because it binds c-ABL and 14-3-3 proteins, in addition to Ras. RIN1 also contains a region homologous to the catalytic domain of Vps9p-like Rab guanine nucleotide exchange factors (GEFs). Here, we show that this region is necessary and sufficient for RIN1 interaction with the GDP-bound Rabs, Vps21p, and Rab5A. RIN1 is also shown to stimulate Rab5 guanine nucleotide exchange, Rab5A-dependent endosome fusion, and EGF receptor-mediated endocytosis. The stimulatory effect of RIN1 on all three of these processes is potentiated by activated Ras. We conclude that Ras-activated endocytosis is facilitated, in part, by the ability of Ras to directly regulate the Rab5 nucleotide exchange activity of RIN1.  相似文献   

3.
E-cadherin is a key cell-cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of an extracellular signal, such as hepatocyte growth factor (HGF)/scatter factor. Rab5 small G protein has been implicated in the HGF-induced endocytosis of E-cadherin, but the molecular mechanism for the regulation of Rab5 activity remains unknown. We first studied this mechanism by using the cell-free assay system for the endocytosis of E-cadherin of the AJ-enriched fraction from rat livers. HGF induced activation of Ras small G protein, which then bound to RIN2, a Rab5 GDP/GTP exchange factor with the Vps9p-like guanine nucleotide exchange factor and Ras association domains, and activated it. Activated RIN2 then activated Rab5, eventually inducing the endocytosis of E-cadherin. We then studied whether RIN2 was involved in the HGF-induced endocytosis of E-cadherin in intact Madin-Darby canine kidney cells. RIN2 localized at the cell-cell adhesion sites, and its guanine nucleotide exchange factor activity was required for the HGF-induced endocytosis of E-cadherin in Madin-Darby canine kidney cells. These results indicate that RIN2 connects Ras to Rab5 in the HGF-induced endocytosis of E-cadherin.  相似文献   

4.
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1.  相似文献   

5.
The small GTPase Rab5, which cycles between GDP-bound inactive and GTP-bound active forms, plays essential roles in membrane budding and trafficking in the early endocytic pathway. Rab5 is activated by various vacuolar protein sorting 9 (VPS9) domain-containing guanine nucleotide exchange factors. Rab21, Rab22, and Rab31 (members of the Rab5 subfamily) are also involved in the trafficking of early endosomes. Mechanisms controlling the activation Rab5 subfamily members remain unclear. RIN (Ras and Rab interactor) represents a family of multifunctional proteins that have a VPS9 domain in addition to Src homology 2 (SH2) and Ras association domains. We investigated whether RIN family members act as guanine nucleotide exchange factors (GEFs) for the Rab5 subfamily on biochemical and cell morphological levels. RIN3 stimulated the formation of GTP-bound Rab31 in cell-free and in cell GEF activity assays. RIN3 also formed enlarged vesicles and tubular structures, where it colocalized with Rab31 in HeLa cells. In contrast, RIN3 did not exhibit any apparent effects on Rab21. We also found that serine to alanine substitutions in the sequences between SH2 and RIN family homology domain of RIN3 specifically abolished its GEF action on Rab31 but not Rab5. We examined whether RIN3 affects localization of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is transported between trans-Golgi network and endocytic compartments. We found that RIN3 partially translocates CD-MPR from the trans-Golgi network to peripheral vesicles and that this is dependent on its Rab31-GEF activity. These results indicate that RIN3 specifically acts as a GEF for Rab31.  相似文献   

6.
Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data.  相似文献   

7.
RIC, a calmodulin-binding Ras-like GTPase.   总被引:2,自引:0,他引:2       下载免费PDF全文
P D Wes  M Yu    C Montell 《The EMBO journal》1996,15(21):5839-5848
Neuronal activity dramatically increases the concentration of cytosolic Ca2+, which then serves as a second messenger to direct diverse cellular responses. Calmodulin is a primary mediator of Ca2+ signals in the nervous system. In a screen for calmodulin-binding proteins, we identified RIC, a protein related to the Ras subfamily of small GTPases. In addition to the ability to bind calmodulin, a number of unique features distinguished RIC from other Ras-like GTPases, including the absence of a signal for prenylation and a distinct effector (G2) domain. Furthermore, we describe two human proteins, RIN and RIT, which were 71% and 66% identical to RIC respectively, shared related G2 domains with RIC, and lacked prenylation signals, suggesting that the RIC family is conserved from flies to humans. While Ric and RIT were widely expressed, expression of RIN was confined to the neuron system.  相似文献   

8.
Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes.  相似文献   

9.
Ras activation is critical for T-cell development and function, but the specific roles of the different Ras isoforms in T-lymphocyte function are poorly understood. We recently reported T-cell receptor (TCR) activation of ectopically expressed H-Ras on the the Golgi apparatus of T cells. Here we studied the isoform and subcellular compartment specificity of Ras signaling in Jurkat T cells. H-Ras was expressed at much lower levels than the other Ras isoforms in Jurkat and several other T-cell lines. Glutathione S-transferase-Ras-binding domain (RBD) pulldown assays revealed that, although high-grade TCR stimulation and phorbol ester activated both N-Ras and K-Ras, low-grade stimulation of the TCR resulted in specific activation of N-Ras. Surprisingly, whereas ectopically expressed H-Ras cocapped with the TCRs in lipid microdomains of the Jurkat plasma membrane, N-Ras did not. Live-cell imaging of Jurkat cells expressing green fluorescent protein-RBD, a fluorescent reporter of GTP-bound Ras, revealed that N-Ras activation occurs exclusively on the Golgi apparatus in a phospholipase Cgamma- and RasGRP1-dependent fashion. The specificity of N-Ras signaling downstream of low-grade TCR stimulation was dependent on the monoacylation of the hypervariable membrane targeting sequence. Our data show that, in contrast to fibroblasts stimulated with growth factors in which all three Ras isoforms become activated and signaling occurs at both the plasma membrane and Golgi apparatus, Golgi-associated N-Ras is the critical Ras isoform and intracellular pool for low-grade TCR signaling in Jurkat T cells.  相似文献   

10.
In vivo interaction of AF-6 with activated Ras and ZO-1.   总被引:3,自引:0,他引:3  
AF-6 contains two putative Ras-associating domains (RA domains) which are seen in several Ras effectors such as RalGDS and RIN1. We previously showed that an AF-6 fragment containing the amino-terminal (N-terminal) RA domain directly binds to activated Ras and ZO-1 in vitro. In this study, we showed that a single amino acid mutation in the N-terminal RA domain of AF-6 abolished the interaction of AF-6 with activated Ras and that the sites of this critical amino acid residue were similar to those for Raf-1 and RalGDS. The overexpression of the N-terminal RA domain of AF-6 inhibited the Ras-dependent c-fos promoter/enhancer stimulation in NIH3T3 cells. Endogenous AF-6 was coimmunoprecipitated with activated Ras from Rat1 cells expressing activated Ras. Moreover, we showed that AF-6 was coimmunoprecipitated with ZO-1 from Rat1 cells. Taken together, these results indicate that the Ras-interacting region on AF-6 is structurally similar to that on Raf-1 and on RalGDS and that AF-6 interacts with activated Ras and ZO-1 in vivo.  相似文献   

11.
Recently, we have found that the accumulation of ripening inhibitor (RIN) protein increased gradually during tomato fruit ripening. Here, the recombinant protein was expressed in Escherichia coli and affinity-purified. The DNA binding activity of renatured RIN protein was tested by electrophoretic mobility shift assay. The results indicated that an optimal expression and purification system was suitable for obtaining active RIN with DNA binding activity.  相似文献   

12.
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.  相似文献   

13.
14.
Intersectin 1 (ITSN1) is a conserved adaptor protein implicated in endocytosis, regulation of actin cytoskeleton rearrangements and mitogenic signaling. Its expression is characterized by multiple alternative splicing. Here we show neuron-specific expression of ITSN1 isoforms containing exon 20, which encodes five amino acid residues in the first SH3 domain (SH3A). In vitro binding experiments demonstrated that inclusion of exon 20 changes the binding properties of the SH3A domain. Endocytic proteins dynamin 1 and synaptojanin 1 as well as GTPase-activating protein CdGAP bound the neuron-specific variant of the SH3A domain with higher affinity than ubiquitously expressed SH3A. In contrast, SOS1, a guanine nucleotide exchange factor for Ras, and the ubiquitin ligase Cbl mainly interact with the ubiquitously expressed isoform. These results demonstrate that alternative splicing leads to the formation of two pools of ITSN1 with potentially different properties in neurons, affecting ITSN1 function as adaptor protein.  相似文献   

15.
The Arabidopsis RPM1 protein confers resistance to disease caused by Pseudomonas syringae strains delivering either the AvrRpm1 or AvrB type III effector proteins into host cells. We characterized two closely related RPM1-interacting proteins, RIN2 and RIN3. RIN2 and RIN3 encode RING-finger type ubiquitin ligases with six apparent transmembrane domains and an ubiquitin-binding CUE domain. RIN2 and RIN3 are orthologs of the mammalian autocrine motility factor receptor, a cytokine receptor localized in both plasma membrane caveolae and the endoplasmic reticulum. RIN2 is predominantly localized to the plasma membrane, as are RPM1 and RPS2. The C-terminal regions of RIN2 and RIN3, including the CUE domain, interact strongly with an RPM1 N-terminal fragment and weakly with a similar domain from the Arabidopsis RPS2 protein. RIN2 and RIN3 can dimerize through their C-terminal regions. The RING-finger domains of RIN2 and RIN3 encode ubiquitin ligases. Inoculation with P. syringae DC3000(avrRpm1) or P. syringae DC3000(avrRpt2) induces differential decreases of RIN2 mobility in SDS-PAGE and disappearance of the majority of RIN2. A rin2 rin3 double mutant expresses diminished RPM1- and RPS2-dependent hypersensitive response (HR), but no alteration of pathogen growth. Thus, the RIN2/RIN3 RING E3 ligases apparently act on a substrate that regulates RPM1- and RPS2-dependent HR.  相似文献   

16.
Several genetic studies in Drosophila have shown that the dSprouty (dSpry) protein inhibits the Ras/mitogen-activated protein (MAP) kinase pathway induced by various activated receptor tyrosine kinase receptors, most notably those of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR). Currently, the mode of action of dSpry is unknown, and the point of inhibition remains controversial. There are at least four mammalian Spry isoforms that have been shown to co-express preferentially with FGFRs as compared with EGFRs. In this study, we investigated the effects of the various mammalian Spry isoforms on the Ras/MAP kinase pathway in cells overexpressing constitutively active FGFR1. hSpry2 was significantly more potent than mSpry1 or mSpry4 in inhibiting the Ras/MAP kinase pathway. Additional experiments indicated that full-length hSpry2 was required for its full potency. hSpry2 had no inhibitory effect on either the JNK or the p38 pathway and displayed no inhibition of FRS2 phosphorylation, Akt activation, and Ras activation. Constitutively active mutants of Ras, Raf, and Mek were employed to locate the prospective point of inhibition of hSpry2 downstream of activated Ras. Results from this study indicated that hSpry2 exerted its inhibitory effect at the level of Raf, which was verified in a Raf activation assay in an FGF signaling context.  相似文献   

17.
18.
The Pseudomonas syringae type III effector protein avirulence protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein (resistance to Pseudomonas maculicula protein 1 [RPM1]-interacting protein). RIN4 is a regulator of basal host defense responses. Targeting of RIN4 by AvrB is recognized by the host RPM1 nucleotide-binding leucine-rich repeat disease resistance protein, leading to accelerated defense responses, cessation of pathogen growth, and hypersensitive host cell death at the infection site. We determined the structure of AvrB complexed with an AvrB-binding fragment of RIN4 at 2.3 A resolution. We also determined the structure of AvrB in complex with adenosine diphosphate bound in a binding pocket adjacent to the RIN4 binding domain. AvrB residues important for RIN4 interaction are required for full RPM1 activation. AvrB residues that contact adenosine diphosphate are also required for initiation of RPM1 function. Nucleotide-binding residues of AvrB are also required for its phosphorylation by an unknown Arabidopsis protein(s). We conclude that AvrB is activated inside the host cell by nucleotide binding and subsequent phosphorylation and, independently, interacts with RIN4. Our data suggest that activated AvrB, bound to RIN4, is indirectly recognized by RPM1 to initiate plant immune system function.  相似文献   

19.
Ras proteins have become paradigms for isoform- and compartment-specific signaling. Recent work has shown that Ras isoforms are differentially distributed within cell surface signaling nanoclusters and on endomembranous compartments. The critical feature regulating Ras protein localization and isoform-specific functions is the C-terminal hypervariable region (HVR). In this review we discuss the differential post-translational modifications and reversible targeting functions of Ras isoform HVR motifs. We describe how compartmentalized Ras signaling has specific functional consequences and how cell surface signaling nanoclusters generate precise signaling outputs.  相似文献   

20.
Ras activation is crucial for lymphocyte development and effector function. Both T and B lymphocytes contain two types of Ras activators: ubiquitously expressed SOS and specifically expressed Ras guanyl nucleotide-releasing protein (RasGRP). The need for two activators is enigmatic since both are activated following antigen receptor stimulation. In addition, RasGRP1 appears to be dominant over SOS in an unknown manner. The crystal structure of SOS provides a clue: an unusual allosteric Ras-GTP binding pocket. Here, we demonstrate that RasGRP orchestrates Ras signaling in two ways: (i) by activating Ras directly and (ii) by facilitating priming of SOS with RasGTP that binds the allosteric pocket. Priming enhances SOS' in vivo activity and creates a positive RasGTP-SOS feedback loop that functions as a rheostat for Ras activity. Without RasGRP1, initiation of this loop is impaired because SOS' catalyst is its own product (RasGTP)—hence the dominance of RasGRP1. Introduction of an active Ras-like molecule (RasV12C40) in T- and B-cell lines can substitute for RasGRP function and enhance SOS' activity via its allosteric pocket. The unusual RasGRP-SOS interplay results in sensitive and robust Ras activation that cannot be achieved with either activator alone. We hypothesize that this mechanism enables lymphocytes to maximally respond to physiologically low levels of stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号