首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of potent Pin1 inhibitors has been challenging because its active site specifically recognizes a phospho-protein epitope. The de novo design of phosphate-based Pin1 inhibitors focusing on the phosphate recognition pocket and the successful replacement of the phosphate group with a carboxylate have been previously reported. The potency of the carboxylate series is now further improved through structure-based optimization of ligand–protein interactions in the proline binding site which exploits the H-bond interactions necessary for Pin1 catalytic function. Further optimization using a focused library approach led to the discovery of low nanomolar non-phosphate small molecular Pin1 inhibitors. Structural modifications designed to improve cell permeability resulted in Pin1 inhibitors with low micromolar anti-proliferative activities against cancer cells.  相似文献   

2.
Orthogonal aminoacyl‐tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM‐based molecular docking and free energy calculations were used to evaluate rational design of specific protein–ligand interactions for aminoacyl‐tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p‐benzoyl‐L ‐phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man‐α‐O‐Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
Mosberg HI 《Biopolymers》1999,51(6):426-439
The elaboration of a pharmacophore model for the delta opioid receptor selective ligand JOM-13 (Tyr-c[D-Cys-Phe-D-Pen]OH) and the parallel, independent development of a structural model of the delta receptor are summarized. Although the backbone conformation of JOM-13's tripeptide cycle is well defined, considerable conformational lability is evident in the Tyr(1) residue and in the Phe(3) side chain, key pharmacophore elements of the ligand. Replacement of these flexible features of the ligand by more conformationally restricted analogues and subsequent correlation of receptor binding and conformational properties allowed the number of possible binding conformations of JOM-13 to be reduced to two. Of these, one was chosen as more likely, based on its better superposition with other conformationally constrained delta receptor ligands. Our model of the delta opioid receptor, constructed using a general approach that we have developed for all rhodopsin-like G protein-coupled receptors, contains a large cavity within the transmembrane domain that displays excellent complementarity in both shape and polarity to JOM-13 and other delta ligands. This binding pocket, however, cannot accommodate the conformer of JOM-13 preferred from analysis of ligands, alone. Rather, only the "alternate" allowed conformer, identified from analysis of the ligands but "disfavored" because it does not permit simultaneous superposition of all pharmacophore elements of JOM-13 with other delta ligands, fits the binding site. These results argue against a simple view of a single, common fit to a receptor binding site and suggest, instead, that at least some binding site interactions of different ligands may differ.  相似文献   

5.
Thymidylate synthase (TS) is a central target for the design of chemotherapeutic agents due to its vital role in DNA synthesis. Structural studies of binary complexes between Escherichia coli TS and various nucleotides suggest the chemotherapeutic agent FdUMP and the natural ligand dUMP bind similarly. We show, however, that FdUMP binding to human TS yields a substantially greater decrease in fluorescence than does dUMP. Because the difference in quenching due to ligand binding was approximately two-fold and this difference was not seen when using ecTS, the intriguing result indicated a significant difference in the mode of FdUMP binding to the human enzyme. We compared the binding affinities of dUMP, FdUMP, and TMP to TS from both species and found no significant differences for the individual ligands. Because binding affinities were not different among the ligands, the method of continuous variation was employed to determine binding stoichiometry. Similar to that found for dUMP binding to human and ecTS, FdUMP displayed single site occupancy with both enzymes. These results show that nucleotide binding differences exist for FdUMP and dUMP binding to the human enzyme. The observed differences are not due to differences in stoichiometry or ligand affinity. Therefore, although the crystal structure of human TS with various nucleotide ligands has not been solved, these results show that the differences observed using fluorescence methods result from as yet unidentified differential interactions between the human enzyme and nucleotide ligands.  相似文献   

6.
The crystal structures of proflavin and 6-fluorotryptamine thrombin have been completed showing binding of both ligands at the active site S1 pocket. The structure of proflavin:thrombin was confirmatory, while the structure of 6-fluorotryptamine indicated a novel binding mode at the thrombin active site. Furthermore, speculation that the sodium atom identified in an extended solvent channel beneath the S1 pocket may play a role in binding of these ligands was investigated by direct proflavin titrations as well as chromogenic activity measurements as a function of sodium concentration at constant ionic strength. These results suggested a linkage between the sodium site and the S1 pocket. This observation could be due to a simple ionic interaction between Asp189 and the sodium ion or a more complicated structural rearrangement of the thrombin S1 pocket. Finally, the unique binding mode of 6-fluorotryptamine provides ideas toward the design of a neutrally charged thrombin inhibitor.  相似文献   

7.
Inhibition of the Chk1 kinase by small molecules is of great therapeutic interest for oncology and in understanding the cellular regulation of the G2/M checkpoint. We report how computational docking of a large electronic catalogue of compounds to an X-ray structure of the Chk1 ATP-binding site allowed prioritisation of a small subset of these compounds for assay. This led to the discovery of 10 novel Chk1 inhibitors, distributed among nine new and clearly different chemical scaffolds. Several of these scaffolds have promising lead-like properties. All these ligands act by competitive binding to the targeted ATP site. The crystal structures of four of these compounds bound to this site are presented, and reasonable modelled docking modes are suggested for the 5 other scaffolds. This structural context is used to assess the potential of these scaffolds for further medicinal chemistry efforts, suggesting that several of them could be elaborated to make additional interactions with the buried part of the ATP site. Some unusual interactions with the conserved kinase backbone motif are pointed out. The ligand-binding modes are also used to discuss their medicinal chemistry potential with respect to undesirable chemical functionalities, whether these functionalities bind directly to the protein or not. Overall, this work illustrates how virtual screening can identify a diverse set of ligands which bind to the targeted site. The structural models for these ligands in the Chk1 ATP-binding site will facilitate further medicinal chemistry efforts targeting this kinase.  相似文献   

8.
The serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding region of the ATP-binding site. These compounds exhibit IC(50) values in the low nanomolar range and are highly selective for Chk2 over Chk1. X-ray crystallography was used to determine the structures of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of binding.  相似文献   

9.
Using a structure based design approach we have identified a series of indazole substituted pyrrolopyrazines, which are potent inhibitors of JAK3. Intramolecular electronic repulsion was used as a strategy to induce a strong conformational bias within the ligand. Compounds bearing this conformation participated in a favorable hydrophobic interaction with a cysteine residue in the JAK3 binding pocket, which imparted high selectivity versus the kinome and improved selectivity within the JAK family.  相似文献   

10.
We describe a combinatorial method for de novo ligand design to an ensemble of receptor structures. Receptor conformations, protonation states, and structural water molecules are considered consistently within the framework of de novo ligand design. The method relies on Monte Carlo optimization to search the space of ligand structures, conformations, and rigid-body movements as well as receptor models. The method is applied to an ensemble of HIV protease and human collagenase receptor models. Ligand structures generated de novo exhibit the correct hydrogen-bonding pattern in the core of the active site, with hydrophobic groups extending into the receptor S1 and S1' pocket space. Furthermore, it is shown that known ligands are recovered in the correct binding mode and in the native, most tightly binding receptor model.  相似文献   

11.
Binding of cell surface glycans by influenza hemagglutinin controls viral attachment and infection of host cells. This binding is a three-way interaction between viral proteins, host glycans, and viral glycans; many structural details of this interaction have been difficult to resolve. Here, we use a series of 100-ns molecular dynamics simulations to further analyze available crystallographic data on hemagglutinin-ligand interactions. Based on our simulations, we predict that the viral glycans contact the host glycans within 1-2 residues of the ligand-binding site. We also predict that the glycan-glycan interactions contain both stabilizing and destabilizing components. These predictions suggest a structural means to explain why changes to viral glycosylation alter the efficiency and selectivity of ligand binding. We also predict that the proximity of these interactions to the ligand-binding pocket will impact the binding affinity of small glycomimetic ligands analogous to the influenza neuraminidase inhibitors currently in clinical use.  相似文献   

12.
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level.  相似文献   

13.
Following the discovery of a novel series of phosphate-containing small molecular Pin1 inhibitors, the drug design strategy shifted to replacement of the phosphate group with an isostere with potential better pharmaceutical properties. The initial loss in potency of carboxylate analogs was likely due to weaker charge–charge interactions in the putative phosphate binding pocket and was subsequently recovered by structure-based optimization of ligand–protein interactions in the proline binding site, leading to the discovery of a sub-micromolar non-phosphate small molecular Pin1 inhibitor.  相似文献   

14.
SH2 domains provide fundamental recognition sites in tyrosine kinase-mediated signaling pathways which, when aberrant, give rise to disease states such as cancer, diabetes, and immune deficiency. Designing specific inhibitors that target the SH2 domain-binding site, however, have presented a major challenge. Despite well over a decade of intensive research, clinically useful SH2 domain inhibitors have yet to become available. A better understanding of the structural, dynamic, and thermodynamic contributions to ligand binding of individual SH2 domains will provide some insight as to whether inhibitor development is possible. We report the first high resolution solution structure of the apo-v-Src SH2 domain. This is accompanied by the analysis of backbone dynamics and pK(a) values within the apo- and peptide-bound states. Our results indicate that the phosphotyrosine (pY) pocket is tightly structured and hence not adaptable to exogenous ligands. On the other hand, the pocket which accommodates residues proximal and C-terminal of the pY (pY + 3) or so-called specificity determining region, is a large dynamic-binding surface. This appears to allow a high level of promiscuity in binding. Binding of a series of synthetic, phosphotyrosyl, peptidomimetic compounds designed to explore interactions in the pY + 3 pocket further demonstrates the ability of the SH2 domain to accommodate diverse ligands. The thermodynamic parameters of these interactions show dramatic enthalpy/entropy compensation. These data suggest that the v-Src SH2 domain does not have a highly specific secondary-binding site, which clearly presents a major hurdle to design selective inhibitors.  相似文献   

15.
Docking simulations and three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses were conducted on a series of indole amide analogues as potent histone deacetylase inhibitors. The studies include comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Selected ligands were docked into the active site of human HDAC1. Based on the docking results, a novel binding mode of indole amide analogues in the human HDAC1 catalytic core is presented, and enzyme/inhibitor interactions are discussed. The indole amide group is located in the open pocket, and anchored to the protein through a pair of hydrogen bonds with Asp99 O-atom and amide NH group on ligand. Based on the binding mode, predictive 3D-QSAR models were established, which had conventional r2 and cross-validated coefficient values (r(cv)2) up to 0.982 and 0.601 for CoMFA and 0.954 and 0.598 for CoMSIA, respectively. A comparison of the 3D-QSAR field contributions with the structural features of the binding site showed good correlation between the two analyses. The results of 3D-QSAR and docking studies validate each other and provided insight into the structural requirements for activity of this class of molecules as HDAC inhibitors. The CoMFA and CoMSIA PLS contour maps and MOLCAD-generated active site electrostatic, lipophilicity, and hydrogen-bonding potential surface maps, as well as the docking studies, provided good insights into inhibitor-HDAC interactions at the molecular level. Based on these results, novel molecules with improved activity can be designed.  相似文献   

16.
Cheng F  Wang Q  Chen M  Quiocho FA  Ma J 《Proteins》2008,70(4):1228-1234
Human fatty acid synthase (hFAS) thioesterase domain (TE) is an attractive drug target to treat obesity and cancer. On the basis of the recently published crystal structure of TE domain of hFAS, we performed molecular surface analysis and docking study to characterize the molecular interactions between the enzyme and its various ligands. Surface analysis identified the ligand-binding pocket of TE domain that encompasses the catalytic triad of Ser2308, His2481, Asp2338. Docking of palmitate, the main biological product of hFAS, into this pocket revealed the ligand-binding mode, in which the hydrophobic interactions are the dominant driving forces. The catalytic mechanism of TE domain can also be well explained based on the generated TE-palmitate complex structure. Moreover, the comparison of the binding modes of five fatty acids with chain lengths ranging from 12 to 20 carbons confirmed that the ligand binding pocket of TE domain is a decisive factor in chain length specificity. In addition, docking of two known TE inhibitors, c75 and orlistat revealed the pharmacophore of these hFAS TE inhibitors, which will prove useful in structure-based drug design against this important target.  相似文献   

17.
Polo-like kinase 1 (PLK1) plays a critical role during multiple stages of cell cycle progression and is involved in the development and metastasis of malignant tumours. The protein contains a regulatory polo-box domain (PBD) that can recognise and bind to a wide variety of phosphorylated substrates. Here, a systematic amino acid preference profile of phosphopeptide interaction with PLK1 PBD domain was created based on the crystal structures of the domain in complex with its natural phosphopeptide ligands. With the profile we were able to explore the structural basis and energetic landscape of phosphopeptide binding to the domain. Moreover, in addition to domain peptide-binding pocket we also examined the intermolecular interaction between the N-terminal region of phosphopeptide and a newly discovered crystal packing site of the domain. All the harvested information was successfully integrated to guide the structural design and optimisation of phosphopeptide ligands with improved affinity and selectivity for the domain, which were then confirmed in vitro by fluorescence anisotropy assays. Structural analysis and energetic analysis revealed that the phosphopeptide ligand can be divided into three functionally independent sections: a N-terminal flexible tail, a C-terminal unbinding tail and a central binding region. The N-terminal tail possesses a high flexibility that can roll over on the surface of PBD crystal packing site, while the C-terminal tail points out of the peptide-binding pocket of the domain and no substantial interaction can be observed between them. In contrast, the central region binds tightly to the domain pocket and exhibits modest conformational change over different ligands.  相似文献   

18.
Protein kinase C (PKC) is a critical cell signaling pathway involved in many disorders such as cancer and Alzheimer-type dementia. To date, evaluation of PKC ligand binding affinity has been performed by competitive studies against radiolabeled probes that are problematic for high-throughput screening. In the present study, we have developed a fluorescent-based binding assay system for identifying ligands that target the PKC ligand binding domain (C1 domain). An environmentally sensitive fluorescent dye (solvatochromic fluorophore), which has been used in multiple applications to assess protein-binding interactions, was inserted in proximity to the binding pocket of a novel PKCδ C1b domain. These resultant fluorescent-labeled δC1b domain analogues underwent a significant change in fluorescent intensity upon ligand binding, and we further demonstrate that the fluorescent δC1b domain analogues can be used to evaluate ligand binding affinity.  相似文献   

19.
Cardiac troponin C (cTnC) is the Ca2? dependent switch for contraction in heart muscle making it a potential target for drug research in the therapy of heart failure. Calcium binding on Troponin C (TnC) triggers a series of conformational changes exposing a hydrophobic pocket in the N-domain of TnC (cNTnC), which leads to force generation. Mutations and acidic pH have been related to altering the sensitivity of TnC affecting the efficiency of the heart. Bepridil, identified as a calcium sensitizer to TnC, has been experimentally found to bind to the N-domain pocket of TnC but with negative cooperativity. Screening and de novo design were carried out using LUDI and AUTOLUDI programs in this work to identify and design potential ligands that can bind to the hydrophobic pocket of TnC. Two docking centers and multiple searching radii including 5 ?, 5.5 ?, 6 ?, 6.5 ?, 7.0 ? and 7.5 ? were used in LUDI to screen the ZINC database. Based on the LUDI docking results, 8 molecules were identified from the database with good potential to bind into the binding pocket and they were used as template molecules to generate a series of new molecules by AUTOLUDI design. Out of all the newly-designed molecules, 14 new ligands were recognized to be potential ligands that can bind and fit well into the binding pocket. These molecules can be used as starting molecules to develop TnC ligands. The binding stability and binding affinity of these molecules to the protein was further analyzed by molecular dynamics simulations. The results show that the binding energies, interactions and complex stabilities of 6 ligands are comparable to or better than bepridil.  相似文献   

20.
Human aldose reductase (ALR2) has evolved as a promising therapeutic target for the treatment of diabetic long-term complications. The binding site of this enzyme possesses two main subpockets: the catalytic anion-binding site and the hydrophobic specificity pocket. The latter can be observed in the open or closed state, depending on the bound ligand. Thus, it exhibits a pronounced capability for induced-fit adaptations, whereas the catalytic pocket exhibits rigid properties throughout all known crystal structures. Here, we determined two ALR2 crystal structures at 1.55 and 1.65 A resolution, each complexed with an inhibitor of the recently described naphtho[1,2-d]isothiazole acetic acid series. In contrast to the original design hypothesis based on the binding mode of tolrestat (1), both inhibitors leave the specificity pocket in the closed state. Unexpectedly, the more potent ligand (2) extends the catalytic pocket by opening a novel subpocket. Access to this novel subpocket is mainly attributed to the rotation of an indole moiety of Trp 20 by about 35 degrees . The newly formed subpocket provides accommodation of the naphthyl portion of the ligand. The second inhibitor, 3, differs from 2 only by an extended glycolic ester functionality added to one of its carboxylic groups. However, despite this slight structural modification, the binding mode of 3 differs dramatically from that of the first inhibitor, but provokes less pronounced induced-fit adaptations of the binding cavity. Thus, a novel binding site conformation has been identified in a region where previous complex structures suggested only low adaptability of the binding pocket. Furthermore, the two ligand complexes represent an impressive example of how the slight change of a chemically extended side-chain at a given ligand scaffold can result in a dramatically altered binding mode. In addition, our study emphasizes the importance of crystal structure analysis for the translation of affinity data into structure-activity relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号