首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of heavy water D2O on the rate of hydrolysis of ATP and pNPP by Na,K-ATPase was studied. Heavy water of high concentration inhibits the rate of ATPase reaction in all the studied ratios of the ions Na/K at constant ionic strength 150 mM. Activation of the enzyme was observed in the solution with low concentration of heavy water (less than 5%). The value of isotope effects depended on the ratio between sodium and potassium ion concentrations in the medium. At low temperature no activation of the enzyme with heavy water in low concentration was observed. Substitution of usual water for the heavy one was accompanied by a decrease of apparent constants of enzyme activation with sodium and potassium ions. During pNPP hydrolysis with Na,K-ATPase an increase of reaction rate in the medium with heavy water was observed. Substitution of potassium ions by cesium resulted in an increase of isotope effects during ATP and pNPP hydrolysis. Analysis of isotope effects in terms of the molecular model of sodium pump proposed permits a conclusion that the isotope effects of heavy water are explained by its influence as a solvent, the binding centres of potassium and sodium ions are localized in different regions of the enzyme differing in physico-chemical properties. The structure of sodium centres is controlled by hydrogen bonds, and of potassium ones--by hydrophobic interactions; the transport of ions by the enzyme is accompanied by dehydration of ions.  相似文献   

2.
The effect of ionizing radiation of 0.206 C/kg on the kinetics of activation of rat kidney Na,K-ATPase preparation by Na and K ions was studied as an index of possible qualitative and quantitative changes in the properties of the enzyme. Ionizing radiation was shown not only to increase the enzyme activity but also to change the optimal rate of ATP hydrolysis by Na,K-ATPase and to induce some differences in the shape of the curve for Na,K-ATPase dependence upon Na-sodium//potassium ion ratio in the incubation medium.  相似文献   

3.
Effects of sodium, lithium and amiloride on the ATPase reaction and on its potassium-dependent step were studied using membrane preparations of Na,K-ATPase. It was established that the addition of 70 mM NaCl or LiCl to the reaction medium diminished the hydrolysis of para-nitrophenyl phosphate (pNPP) by 70 and 40%, respectively. Amiloride (0.8 mM) inhibited activities of Na,K-ATPase and pNPPase by 50 and 15%, respectively. The higher concentrations of amiloride produced a more prominent inhibition of Na,K-ATPase, but not of pNPPase. There was no correlation between the effect of amiloride on the pNPP hydrolysis and potassium concentration in the medium. There was the additivity in the inhibition of pNPPase by 0.8 mM amiloride and sodium or lithium ions up to the concentrations of ions as high as 30 mM. A conclusion is made that the inhibition of Na,K-ATPase by amiloride is mediated through the modification of the sensitivity of the enzyme to sodium.  相似文献   

4.
Petrushanko  I. Yu.  Mitkevich  V. A.  Makarov  A. A. 《Biophysics》2020,65(5):711-730
Biophysics - This review considers the molecular mechanisms involved in the redox regulation of the Na,K-ATPase. The enzyme creates a transmembrane gradient of sodium and potassium ions, which is...  相似文献   

5.
Regulation of internal pH of sea urchin sperm. A role for the Na/K pump   总被引:1,自引:0,他引:1  
In the absence of sodium, sea urchin sperm have an acidic internal pH. The addition of sodium, lithium, or ammonium, but not of potassium ions, induces an internal alkalization. If potassium is added in the presence of sodium, a further alkalization is obtained; in contrast, potassium addition in presence of Li+ or NH+4 does not change the internal pH. The K+-induced pHi change is inhibited by ouabain and when sperm are depleted of their ATP. A large part of the potassium influx is stimulated by Na+, but not Li+, and inhibited by ouabain and cellular ATP depletion. We conclude that activity of Na/K-ATPase pumps located in the plasma membrane of sea urchin sperm could play a role in regulating the internal pH of sea urchin sperm by recycling sodium ions that enter the cell through Na/H countermovements.  相似文献   

6.
The Na,K-ATPase transports three sodium ions out of the cell and two potassium ions into the cell using ATP hydrolysis for energy. The ion gradient formed by the Na,K-ATPase contributes to the resting membrane potential, maintains cellular excitability and is important for glucose and amino acid uptake in the cell. The alpha1 catalytic isoform is expressed in virtually all cell types. We have previously examined cardiac physiology of mice lacking one copy of the alpha1 isoform gene of the Na,K-ATPase. The observation of reduced cardiac contractility in the alpha1 heterozygous mice was unexpected since mice heterozygous for the alpha2 isoform displayed enhanced cardiac contractility similar to what would be observed with cardiac glycoside treatment. We further examined hearts from alpha1 heterozygous mice to identify genomic responses to reduced Na,K-ATPase capacity. Using microarray analyses, we identified groups of genes whose expressions were perturbed in the alpha1 heterozygous hearts compared to wild-type. Known functional relationships of these genes suggest that multiple biological pathways are altered by alpha1 hemizygosity including activation of the renin-angiotensin system, changes in genes of energy metabolism and transport and elevated brain natriuretic peptide. This suggests that Na,K-ATPase alpha1 isoform activity may be required in numerous cellular processes.  相似文献   

7.
A study was made of the influence of ionizing radiation of 0.31 C/kg on the kinetic parameters showing the activity of brain Na, K-ATPase preparation to be a function of ion-regulator concentration. The use of the new method for the analysis of the enzyme cation centers permitted to estimate that whole-body irradiation of rats with the above dose did not cause in vitro a substantial change in the pattern of Na, K-ATPase activation by Na and K ions.  相似文献   

8.
The effects of carnosine on erythrocyte membrane Na,K-ATPase and isolated enzyme in vitro as well as on membrane Na,K-ATPase activity and lipid peroxidation (LPO) in chronic heart failure (CHF) and acute myocardial infarction (AMI) have been studied. CHF and AMI have been shown to be associated with significant inhibition of the erythrocyte membrane Na,K-ATPase activity and LPO activation. Marked activation of erythrocyte membrane Na,K-ATPase by carnosine in comparison with the isolated enzyme has been established. The ability of carnosine to induce Na,K-ATPase activation and prevent membrane depolarization indicates that the dipeptide may be a useful tool in the pathogenetic therapy of CFH and AMI.  相似文献   

9.
The distribution pattern of marker enzymes (Na, K-ATPase, acetylcholinesterase) in three fractions of synaptic membranes (SM) of rat brain were studied. The effects of three anticonvulsive agents on Na, K-ATPase from the total fraction of rat brain SM and purified membrane preparation from ox brain were estimated by different methods. Under optimal conditions (Na/K = 5) diphenylhydantoin (DPH) at a concentration of 0,1 mM activates Na, K-ATPase from the total SM fraction only in the absence of ouabain, whereas carbamazepine and pyrroxane taken at the same concentrations have no effect on Na, K-ATPase, irrespective of the type of the enzyme assay. DPH seems to compete with ouabain. Under non-optimal ionic conditions (Na/K = 250) all the anticonvulsive substances studied inhibit Na, K-ATPase of the total SM fraction. The mixture of hydrophobic agents (propylene glycol and ethanol) used to dissolve carbamazepine inhibits Na, K-ATPase from the total SM fraction only under non-optimal conditions. The inhibiting effect of the anticonvulsive substances under study on Na, K-ATPase from the purified membrane preparations is maximal at the concentration of 10(-6) M; at higher concentrations the effect is less pronounced.  相似文献   

10.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

11.
Cornelius F 《Biochemistry》2001,40(30):8842-8851
The effects of phospholipid acyl chain length (n(c)), degree of acyl chain saturation, and cholesterol on Na,K-ATPase reconstituted into liposomes of defined lipid composition are described. The optimal acyl chain length of monounsaturated phosphatidylcholine in the absence of cholesterol was found to be 22 but decreased to 18 in the presence of 40 mol % cholesterol. This indicates that the hydrophobic matching of the lipid bilayer and the transmembrane hydrophobic core of the membrane protein is a crucial parameter in supporting optimal Na,K-ATPase activity. In addition, the increased bilayer order induced by both cholesterol and saturated phospholipids could be important for the conformational mobility of the Na,K-ATPase changing the distribution of conformations. Lipid fluidity was important for several parameters of reconstitution, e.g., the amount of protein inserted and the orientation in the liposomes. The temperature dependence of the Na,K-ATPase as well of the Na-ATPase reactions depends both on phospholipid acyl chain length and on cholesterol. Cholesterol increased significantly both the enthalpy of activation and entropy of activation for Na,K-ATPase activity and Na-ATPase activity of Na,K-ATPase reconstituted with monounsaturated phospholipids. In the presence of cholesterol the free energy of activation was minimum at a lipid acyl chain length of 18, the same that supported maximum turnover. In the case of ATPase reconstituted without cholesterol, the minimum free energy of activation and the maximum turnover both shifted to longer acyl chain lengths of about 22.  相似文献   

12.
Na/K-ATPase of salt-stressed salt glands of the domestic duck (Anas platyrhynchos) was purified in membrane-bound form by incubation of the microsomal fraction with sodium dodecylsulphate and ATP followed by discontinuous sucrose gradient centrifugation. Gel electrophoresis of the purified plasma membrane preparation substantially showed the two polypeptide subunits of the Na/K-ATPase both of which stained with the periodic acid-Schiff reagent. About 99% of the total ATPase activity was ouabain-inhibitable amounting to 1300 mumol Pi/(mg protein X h) of specific activity. The anion-stimulated, ouabain-insensitive ATPase increased parallel to the Na/K-ATPase up to the microsomal fraction until it totally vanished during SDS incubation. Electron microscopy of thin sections revealed that the purified fraction consisted of flat and cup-shaped triple-layered membrane fragments. Particles arranged into clusters and strands were visible as 3 to 5 nm surface particles in negatively stained suspensions and as 8 to 10 nm intramembraneous particles in freeze fracture replicas. The differential distribution of the intramembraneous particles on the fracture faces reflected the structural membrane asymmetry. Solubilization of Na/K-ATPase led to the disappearance of intramembraneous particles. Incorporation of the solubilized enzyme into phosphatidylcholine vesicles again showed 8 to 10 nm particles apparently orientated at random in the artificial membrane. Control liposomes prepared in the absence of solubilized enzyme were devoid of intramembraneous particles. These results clearly demonstrate that the avian salt gland Na/K-ATPase exists as 8 to 10 nm particles in both the purified plasma membrane and the artificial phospholipid membrane.  相似文献   

13.
Na,K-ATPase activity has been identified in the apical membrane of rat distal colon, whereas ouabain-sensitive and ouabain-insensitive H,K-ATPase activities are localized solely to apical membranes. This study was designed to determine whether apical membrane Na,K-ATPase represented contamination of basolateral membranes or an alternate mode of H,K-ATPase expression. An antibody directed against the H, K-ATPase alpha subunit (HKcalpha) inhibited apical Na,K-ATPase activity by 92% but did not alter basolateral membrane Na,K-ATPase activity. Two distinct H,K-ATPase isoforms exist; one of which, the ouabain-insensitive HKcalpha, has been cloned. Because dietary sodium depletion markedly increases ouabain-insensitive active potassium absorption and HKcalpha mRNA and protein expression, Na, K-ATPase and H,K-ATPase activities and protein expression were determined in apical membranes from control and sodium-depleted rats. Sodium depletion substantially increased ouabain-insensitive H, K-ATPase activity and HKcalpha protein expression by 109-250% but increased ouabain-sensitive Na,K-ATPase and H,K-ATPase activities by only 30% and 42%, respectively. These studies suggest that apical membrane Na,K-ATPase activity is an alternate mode of ouabain-sensitive H,K-ATPase and does not solely represent basolateral membrane contamination.  相似文献   

14.
Measurements of internal ion concentrations, amino acid pools, and membrane potential were made across a series of HeLa subclones which are amplified for the genes for the sodium- and potassium-activated ATPase (Na,K-ATPase). These subclones expressed heterogeneous levels of ouabain-binding sites, allowing us to construct a graded amplification series. While [K+]i levels did not vary systematically across the series studied, [Na+]i ranged from 9 to 20 mM as a function of Na,K-ATPase expression. Steady-state accumulation of tetraphenylphosphonium in low versus high potassium was used to measure membrane potential. Values for [Na+]i and the membrane potential were used to calculate the sodium electrochemical potential, which was also found to be a function of Na,K-ATPase expression. Measurements of acid-soluble amino acid pools in cell lysates demonstrated that amino acids which are substrates for sodium-dependent transport systems, or which can potentially exchange through system L for a substrate of a sodium-dependent system, varied as a function of the sodium electrochemical potential. This confirmed our prediction of increased amino acid pool sizes in Na,K-ATPase-amplified lines based on observations of elevated flux through the sodium-independent system L. Finally, we measured lactate production and glycolytic potential in a subset of clones and found that both were reduced in subclones with elevated Na,K-ATPase.  相似文献   

15.
Sodium ions as substitutes for protons in the gastric H,K-ATPase   总被引:2,自引:0,他引:2  
In view of the striking homology among various ion-translocating ATPases including Na,K-ATPase, Ca-ATPase, and H,K-ATPase, and the recent evidence that protons can replace cytoplasmic sodium as well as potassium in the reaction mechanism of the Na,K-ATPase (Polvani, C., and Blostein, R. (1988) J. Biol. Chem. 263, 16757-16763), we studied the role of sodium as a substitute for protons in the H,K-ATPase reaction. Using hog gastric H,K-ATPase-rich inside-out membrane vesicles we observed 22Na+ influx which was stimulated by intravesicular potassium ions (K+i) at pH 8.5 but not at pH 7.1. This sodium influx was observed in medium containing ATP and was inhibited by vanadate and SCH28080, a selective inhibitor of the gastric H,K-ATPase. At least 2-fold accumulation of sodium was observed at pH 8.5. Experiments aimed to determine the sidedness of the alkaline pH requirement for K+i-dependent sodium influx showed that K+i-activated sodium influx depends on pHout and is unaffected by changes in pHin. These results support the conclusion that sodium ions substitute for protons in the H,K-ATPase reaction mechanism and provide evidence for a similarity in ion selectivity and/or binding domains of the Na,K-ATPase and the gastric H,K-ATPase enzymes.  相似文献   

16.
The role of small, hydrophobic peptides that are associated with ion pumps or channels is still poorly understood. By using the Xenopus oocyte as an expression system, we have characterized the structural and functional properties of the gamma peptide which co-purifies with Na,K-ATPase. Immuno-radiolabeling of epitope-tagged gamma subunits in intact oocytes and protease protection assays show that the gamma peptide is a type I membrane protein lacking a signal sequence and exposing the N-terminus to the extracytoplasmic side. Co-expression of the rat or Xenopus gamma subunit with various proteins in the oocyte reveals that it specifically associates only with isozymes of Na,K-ATPase. The gamma peptide does not influence the formation and cell surface expression of functional Na,K-ATPase alpha-beta complexes. On the other hand, the gamma peptide itself needs association with Na,K-ATPase in order to be stably expressed in the oocyte and to be transported efficiently to the plasma membrane. Gamma subunits do not associate with individual alpha or beta subunits but only interact with assembled, transport-competent alpha-beta complexes. Finally, electrophysiological measurements indicate that the gamma peptide modulates the K+ activation of Na,K pumps. These data document for the first time the membrane topology, the specificity of association and a potential functional role for the gamma subunit of Na,K-ATPase.  相似文献   

17.
The current generated by electrogenic sodium-potassium exchange at the basolateral membrane of the turtle colon can be measured directly in tissues that have been treated with serosal barium (to block the basolateral potassium conductance) and mucosal amphotericin B (to reduce the cation selectivity of the apical membrane). We studied the activation of this pump current by mucosal sodium and serosal potassium, rubidium, cesium, and ammonium. The kinetics of sodium activation were consistent with binding to three independent sites on the cytoplasmic side of the pump. The pump was not activated by cellular lithium ions. The kinetics of serosal cation activation were consistent with binding to two independent sites with the selectivity Rb > K > Cs > NH4. The properties and kinetics of the basolateral Na/K pump in the turtle colon are at least qualitatively similar to those ofthe well-characterized Na/K-ATPase of the human red blood cell .  相似文献   

18.
Cryptosin, a new cardenolide, was found to preferentially bind to Na,K-ATPase enzyme (7), which is believed to be the ouabain binding site on cardiac sarcolemmal membrane. CD spectral studies revealed that cryptosin, in the presence of Na+ and Mg++ ions, bind to Na,K-ATPase and induce a dose-dependent change in the backbone structure of cardiac Na,K-ATPase.  相似文献   

19.
A microprocedure for the preparation of Na,K-ATPase-containing liposomes with a minimal starting material (200 microgram) of purified Na,K-ATPase is presented. Phosphatidylcholine is added gradually to cholate-solubilized Na,K-ATPase of various concentrations and the lipid-induced decrease in enzyme activity is monitored. After removal of the detergent by dialysis, the transport parameters of the resulting Na,K-ATPase-liposomes are established by a microassay. By relating the transport properties to the Na,K-ATPase activity preset before dialysis, a procedure is developed which allows to prepare standardized Na,K-ATPase-liposomes with predictable transport properties.  相似文献   

20.
Iron is a key element in cell function; however, its excess in iron overload conditions can be harmful through the generation of reactive oxygen species (ROS) and cell oxidative stress. Activity of Na,K-ATPase has been shown to be implicated in cellular iron uptake and iron modulates the Na,K-ATPase function from different tissues. In this study, we determined the effect of iron overload on Na,K-ATPase activity and established the role that isoforms and conformational states of this enzyme has on this effect. Total blood and membrane preparations from erythrocytes (ghost cells), as well as pig kidney and rat brain cortex, and enterocytes cells (Caco-2) were used. In E1-related subconformations, an enzyme activation effect by iron was observed, and in the E2-related subconformations enzyme inhibition was observed. The enzyme's kinetic parameters were significantly changed only in the Na+ curve in ghost cells. In contrast to Na,K-ATPase α2 and α3 isoforms, activation was not observed for the α1 isoform. In Caco-2 cells, which only contain Na,K-ATPase α1 isoform, the FeCl3 increased the intracellular storage of iron, catalase activity, the production of H2O2 and the expression levels of the α1 isoform. In contrast, iron did not affect lipid peroxidation, GSH content, superoxide dismutase and Na,K-ATPase activities. These results suggest that iron itself modulates Na,K-ATPase and that one or more E1-related subconformations seems to be determinant for the sensitivity of iron modulation through a mechanism in which the involvement of the Na, K-ATPase α3 isoform needs to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号