首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rat pineal gland is known to release melatonin in response to noradrenergic stimulation. Since vasopressin (VP)- and oxytocin (OT)-containing fibers innervate the pineal gland, the effects of VP and OT on melatonin release from perifused rat pineal glands were investigated. VP (10−7 M) and OT (10−6 M) decreased the basal melatonin secretion. No dose-dependent effect was observed. At high concentrations (10−5) these peptides potentiated the isoproterenol-induced increase of melatonin secretion. Below 10−5 M no potentiation was observed. Fragments of VP {[pGlu4,Cys6]VP(4–9)} and OT {[pGlu4,Cys6]OT(4–9)} did not display any effect on the isoproterenol-induced melatonin secretion.  相似文献   

2.
We previously found a new single amino acid substitution at codon 706 (Cys-to-Tyr) of the retinoblastoma (RB) gene in a sporadic retinoblastoma patient. The glutathione S-transferase-RB fused protein containing this mutation was here tested for binding to SV40 large T antigen and adenovirus E1A protein, and was shown to have lost its binding affinity. Thus, Tyr, as well as Phe, residues substituted for Cys706 were found to abolish the RB protein activity.  相似文献   

3.
We are addressing the puzzling metal ion specificity of Fe- and Mn-containing superoxide dismutases (SODs) [see C.K.Vance, A.-F. Miller, J. Am. Chem. Soc. 120(3) (1998) 461–467]. Here, we test the significance to activity and active site integrity of the Gln side chain at the center of the active site hydrogen bond network. We have generated a mutant of MnSOD with the active site Gln in the location characteristic of Fe-specific SODs. The active site is similar to that of MnSOD when Mn2+, Fe3+ or Fe2+ are bound, based on EPR and NMR spectroscopy. However, the mutant’s Fe-supported activity is at least 7% that of FeSOD, in contrast to Fe(Mn)SOD, which has 0% of FeSOD’s activity. Thus, moving the active site Gln converts Mn-specific SOD into a cambialistic SOD and the Gln proves to be important but not the sole determinant of metal-ion specificity. Indeed, subtle differences in the spectra of Mn2+, Fe3+ and 1H in the presence of Fe2+ distinguish the G77Q, Q146A mut-(Mn)SOD from WT (Mn)SOD, and may prove to be correlated with metal ion activity. We have directly observed the side chain of the active site Gln in Fe2+SOD and Fe2+(Mn)SOD by 15N NMR. The very different chemical shifts indicate that the active site Gln interacts differently with Fe2+ in the two proteins. Since a shorter distance from Gln to Fe and stronger interaction with Fe correlate with a lower Em in Fe(Mn)SOD, Gln has the effect of destabilizing additional electron density on the metal ion. It may do this by stabilizing OH coordinated to the metal ion.  相似文献   

4.
Biological properties of amino-terminal PTHrP analogues modified in the region 11–13 were examined using ROS 17/2.8 cells. [Leu11,D-Trp12,Arg13,Tyr36]PTHrP(1–36)amide had a 17-fold lower binding affinity for the receptor (apparent Kd: 5 × 10−8 M) than [Tyr36]PTHrP(1–36)amide or [Arg11,13,Tyr36]PTHrP(1–36)amide (apparent Kd for both: 2 × 10−9 M). Moreover, it is only a weak partial agonist despite completely inhibiting radioligand binding. [Leu11,D-Trp12,Arg13,Tyr36,Cys38]PTHrP(7–38) and PTHrP(7–34)amide had similar receptor affinities (apparent Kds: 5 × 10−8 M and 8 × 10−8 M), while that of [Nle8,18,Tyr34]bPTH(7–34)amide was more than 10-fold lower (apparent Kd: 2 × 10−6 M). These changes in biological properties suggest that high affinity receptor binding requires both amino- and carboxyl-terminal domains of the PTHrP(1–36) sequence and/or intramolecular interactions which are impaired by the D-Trp substitution for Gly12.  相似文献   

5.
Human mitochondrial glutaredoxin 2 (GLRX2), which controls intracellular redox balance and apoptosis, exists in a dynamic equilibrium of enzymatically active monomers and quiescent dimers. Crystal structures of both monomeric and dimeric forms of human GLRX2 reveal a distinct glutathione binding mode and show a 2Fe-2S-bridged dimer. The iron-sulfur cluster is coordinated through the N-terminal active site cysteine, Cys-37, and reduced glutathione. The structures indicate that the enzyme can be inhibited by a high GSH/GSSG ratio either by forming a 2Fe-2S-bridged dimer that locks away the N-terminal active site cysteine or by binding non-covalently and blocking the active site as seen in the monomer. The properties that permit GLRX2, and not other glutaredoxins, to form an iron-sulfur-containing dimer are likely due to the proline-to-serine substitution in the active site motif, allowing the main chain more flexibility in this area and providing polar interaction with the stabilizing glutathione. This appears to be a novel use of an iron-sulfur cluster in which binding of the cluster inactivates the protein by sequestering active site residues and where loss of the cluster through changes in subcellular redox status creates a catalytically active protein. Under oxidizing conditions, the dimers would readily separate into iron-free active monomers, providing a structural explanation for glutaredoxin activation under oxidative stress.  相似文献   

6.
The structure of wild-type bacteriophage T4 glutaredoxin (earlier called thioredoxin) in its oxidized form has been refined in a monoclinic crystal form at 2.0 A resolution to a crystallographic R-factor of 0.209. A mutant T4 glutaredoxin gives orthorhombic crystals of better quality. The structure of this mutant has been solved by molecular replacement methods and refined at 1.45 A to an R-value of 0.175. In this mutant glutaredoxin, the active site residues Val15 and Tyr16 have been substituted by Gly and Pro, respectively, to mimic that of Escherichia coli thioredoxin. The main-chain conformation of the wild-type protein is similar in the two independently determined molecules in the asymmetric unit of the monoclinic crystals. On the other hand, side-chain conformations differ considerably between the two molecules due to heterologous packing interactions in the crystals. The structure of the mutant protein is very similar to the wild-type protein, except at mutated positions and at parts involved in crystal contacts. The active site disulfide bridge between Cys14 and Cys17 is located at the first turn of helix alpha 1. The torsion angles of these residues are similar to those of Escherichia coli thioredoxin. The torsion angle around the S-S bond is smaller than that normally observed for disulfides: 58 degrees, 67 degrees and 67 degrees for wild-type glutaredoxin molecule A and B and mutant glutaredoxin, respectively. Each sulfur atom of the disulfide cysteines in T4 glutaredoxin forms a hydrogen bond to one main-chain nitrogen atom. The active site is shielded from solvent on one side by the beta-carbon atoms of the cysteine residues plus side-chains of residues 7, 9, 21 and 33. From the opposite side, there is a cleft where the sulfur atom of Cys14 is accessible and can be attacked by a nucleophilic thiolate ion in the initial step of the reduction reaction.  相似文献   

7.
Abstract: The choline acetyltransferase (ChAT) reaction involves the transfer of the acetyl group of acetyl-CoA to choline, in which an active site histidine is believed to act as a general acid/base catalyst. A comparison of the deduced amino acid sequences of the enzyme from Drosophila , pig, rat, and Caernohabditis elegans revealed three conserved histidines: Drosophila His268, His393, and His426. Each of these histidines was replaced by a leucine and a glutamine, and the kinetic properties of each of the recombinant mutant enzymes were determined. The mutations yielded active His268Leu-ChAT, HisZ68Gln-ChAT, and His393Gln-ChAT and inactive His393Leu-ChAT, His426Leu- ChAT, and His426Gln-ChAT. The kinetic constants Km(CoA), Km(acetyloholine). and Vmax were essentially the same for all of the active mutants. When the integrity of the CoASAc binding site was investigated in the inactive mutants, the data suggested that the binding site in His393Leu-ChAT is disrupted but conserved in His426Leu-ChAT and His426Gln- ChAT. These results suggest that His426 is an essential catalytic residue and could serve as an acid/base catalyst.  相似文献   

8.
The determination of the NMR structure of oxidized Escherichia coli glutaredoxin in aqueous solution is described, and comparisons of this structure with that of reduced E. coli glutaredoxin and the related proteins E. coli thioredoxin and T4 glutaredoxin are presented. Based on nearly complete sequence-specific 1H-NMR assignments, 804 nuclear Overhauser enhancement distance constraints and 74 dihedral angle constraints were obtained as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of oxidized glutaredoxin is made up of three helices and a four-stranded beta-sheet. The three-dimensional structures of oxidized and the recently described reduced glutaredoxin are very similar. Quantitative analysis of the exchange rates of 34 slowly exchanging amide protons from corresponding series of two-dimensional [15N,1H]-correlated spectra of oxidized and reduced glutaredoxin showed close agreement, indicating almost identical hydrogen-bonding patterns. Nonetheless, differences in local dynamics involving residues near the active site and the C-terminal alpha-helix were clearly manifested. Comparison of the structure of E. coli glutaredoxin with those of T4 glutaredoxin and E. coli thioredoxin showed that all three proteins have a similar overall polypeptide fold. An area of the protein surface at the active site containing Arg 8, Cys 11, Pro 12, Tyr 13, Ile 38, Thr 58, Val 59, Pro 60, Gly 71, Tyr 72, and Thr 73 is proposed as a possible site for interaction with other proteins, in particular ribonucleotide reductase. It was found that this area corresponds to previously proposed interaction sites in T4 glutaredoxin and E. coli thioredoxin. The solvent-accessible surface area at the active site of E. coli glutaredoxin showed a general trend to increase upon reduction. Only the sulfhydryl group of Cys 11 is exposed to the solvent, whereas that of Cys 14 is buried and solvent inaccessible.  相似文献   

9.
Glutaredoxin is essential for the glutathione (GSH)-dependent synthesis of deoxyribonucleotides by ribonucleotide reductase, and in addition, it displays a general GSH disulfide oxidoreductase activity. In Escherichia coli glutaredoxin, the active site contains a redox-active disulfide/dithiol of the sequence Cys11-Pro12-Tyr13-Cys14. In this paper, we have prepared and characterized the Cys14----Ser mutant of E. coli glutaredoxin and its mixed disulfide with glutathione. The Cys14----Ser mutant of glutaredoxin is shown to retain 38% of the GSH disulfide oxidoreductase activity of the wild-type protein with hydroxyethyl disulfide as substrate but to be completely inactive with ribonucleotide reductase, demonstrating that dithiol glutaredoxin is the hydrogen donor for ribonucleotide reductase. The covalent structure of the mixed disulfide of glutaredoxin(C14S) with GSH prepared with 15N-labeling of the protein was confirmed with nuclear magnetic resonance (NMR) spectroscopy, establishing a basis for NMR structural studies of the glutathione binding site on glutaredoxin.  相似文献   

10.
Abstract Thioredoxin is a small ( M r 12,000) ubiquitous redox protein with the conserved active site structure: -Trp-Cys-Gly-Pro-Cys-. The oxidized form (Trx-S2) contains a disulfide bridge which is reduced by NADPH and thioredoxin reductase; the reduced form [Trx(SH)2] is a powerful protein disulfide oxidoreductase. Thioredoxins have been characterized in a wide variety of prokaryotic cells, and generally show about 50% amino acid homology to Escherichia coli thioredoxin with a known three-dimensional structure. In vitro Trx-(SH)2 serves as a hydrogen donor for ribonucleotide reductase, an essential enzyme in DNA synthesis, and for enzymes reducing sulfate or methionine sulfoxide. E. coli Trx-(SH)2 is essential for phage T7 DNA replication as a subunit of T7 DNA polymerase and also for assembly of the filamentous phages f1 and M13 perhaps through its localization at the cellular plasma membrane. Some photosynthetic organisms reduce Trx-S2 by light and ferrodoxin; Trx-(SH)2 is used as a disulfide reductase to regulate the activity of enzymes by thiol redox control.
Thioredoxin-negative mutants ( trxA ) of E. coli are viable making the precise cellular physiological functions of thioredoxin unknown. Another small E. coli protein, glutaredoxin, enables GSH to be hydrogen donor for ribonucleotide reductase or PAPS reductase. Further experiments with molecular genetic techniques are required to define the relative roles of the thioredoxin and glutaredoxin systems in intracellular redox reactions.  相似文献   

11.
Thioredoxin/glutathione reductase (TGR) is a recently discovered member of the selenoprotein thioredoxin reductase family in mammals. In contrast to two other mammalian thioredoxin reductases, it contains an N-terminal glutaredoxin domain and exhibits a wide spectrum of enzyme activities. To elucidate the reaction mechanism and regulation of TGR, we prepared a recombinant mouse TGR in the selenoprotein form as well as various mutants and individual domains of this enzyme. Using these proteins, we showed that the glutaredoxin and thioredoxin reductase domains of TGR could independently catalyze reactions normally associated with each domain. The glutaredoxin domain is a monothiol glutaredoxin containing a CxxS motif at the active site, which could receive electrons from either the thioredoxin reductase domain of TGR or thioredoxin reductase 1. We also found that the C-terminal penultimate selenocysteine was required for transfer of reducing equivalents from the thiol/disulfide active site of TGR to the glutaredoxin domain. Thus, the physiologically relevant NADPH-dependent activities of TGR were dependent on this residue. In addition, we examined the effects of selenium levels in the diet and perturbations in selenocysteine tRNA function on TGR biosynthesis and found that expression of this protein was regulated by both selenium and tRNA status in liver, but was more resistant to this regulation in testes.  相似文献   

12.
In Escherichia coli ArsC catalyzes the reduction of arsenate to arsenite using GSH with glutaredoxin as electron donors. E. coli has three glutaredoxins: 1, 2, and 3, each with a classical -Cys-Pro-Tyr-Cys- active site. Glutaredoxin 2 is the major glutathione disulfide oxidoreductase in E. coli, but its function remains unknown. In this report glutaredoxin 2 is shown to be the most effective hydrogen donor for the reduction of arsenate by ArsC. Analysis of single or double cysteine-to-serine substitutions in the active site of the three glutaredoxins indicated that only the N-terminal cysteine residue is essential for activity. This suggests that, during the catalytic cycle, ArsC forms a mixed disulfide with GSH before being reduced by glutaredoxin to regenerate the active ArsC reductase.  相似文献   

13.
As part of a high-throughput, structural proteomic project we have used NMR spectroscopy to determine the solution structure and ascertain the function of a previously unknown, conserved protein (MtH895) from the thermophilic archeon Methanobacterium thermoautotrophicum. Our findings indicate that MtH895 contains a central four-stranded beta-sheet core surrounded by two helices on one side and a third on the other. It has an overall fold superficially similar to that of a glutaredoxin. However, detailed analysis of its three-dimensional structure along with molecular docking simulations of its interaction with T7 DNA polymerase (a thioredoxin-specific substrate) and comparisons with other known members of the thioredoxin/glutaredoxin family of proteins strongly suggest that MtH895 is more akin to a thioredoxin. Furthermore, measurement of the pK(a) values of its active site thiols along with direct measurements of the thioredoxin/glutaredoxin activity has confirmed that MtH895 is, indeed, a thioredoxin and exhibits no glutaredoxin activity. We have also identified a group of previously unknown proteins from several other archaebacteria that have significant (34-44%) sequence identity with MtH895. These proteins have unusual active site -CXXC- motifs not found in any known thioredoxin or glutaredoxin. On the basis of the results presented here, we predict that these small proteins are all members of a new class of truncated thioredoxins.  相似文献   

14.
The biomass of epiphytes and seagrasses has been measured in relation to leaf age in three monospecific seagrass stands of Thalassia hemprichii (Ehrenb.) Aschers. in Papua New Guinea. From June 1981 through August 1982, biomass values for epiphytes at the three sites ranged from 5 to 70 g ADW m−2 sediment surface at site 1, from 5 to 14 g ADW m−2 at site 2, and from 3.5 to 7.0 g ADW m−2 at the site 3. Annual mean epiphyte biomass values for the different sites were 1.3 g ADW m−2 leaf surface at site 1, 1.7 g ADW m−2 leaf surface at site 2, and 1.5 g ADW m−2 leaf surface at site 3.

The annual mean standing crop of T. hemprichii leaves was highest at site 1 (103 g ADW m−2. Values for site 2 and site 3 were 60 g ADW m−2 and 41 g ADW m−2, respectively.

Production of epiphytes was calculated in three different ways: firstly, by using biomass values for each specific leaf-age group, with corrections for colonization; secondly, by fitting the biomass values with a specific growth curve; and thirdly, by estimated the rate of biomass accumulation. On an area basis, production of epiphytes on leaves of T. hemprichii ranged from 0.55 to 3.97 g ADW m−2 day−1 at site 1, from 0.17 to 0.73 g ADW m−2 day−1 at site 2, and from 0.24 to 0.68 g ADW m−2 day−1 at site 3.  相似文献   


15.
16.
We propose a two-metal binding model as a potential mechanism of chelating inhibitors against HIV integrase (HIV IN) represented by 2-hydroxy-3-heteroaryl acrylic acids (HHAAs). Potential inhibitors would bind to two metal ions in the active site of HIV IN to prevent human DNA from undergoing the integration reaction. Correlation of the results of metal (Mg2+ and Mn2+) titration studies with HIV IN inhibition for a series of active and inactive compounds provides support for the model. Results suggest Mg2+ is an essential cofactor for chelating inhibitors.  相似文献   

17.
In order to study the role of N-terminal substitutions of peptide sequences related to the active site of -melanotropin, [Glp5]-MSH(5–10), [Glp5, -Phe7]-MSH(5–10), [Sar5, -Phe7]-MSH(5–10), [Nle4, -Phe7]-MSH(4–10), [N-carbamoyl]-MSH(5–10), and formyl and acetyl derivatives of -MSH(5–10), [Gly5]-MSH(5–10) and [Gly5, -Phe7]-MSH(5–10), were synthesized in solution. The N-terminal acylations enhance by 2 to 10 times the melanin-dispersing activity of the unsubstituted sequences. Alkylation of the N-terminus does not change the biological activity of the parent peptide, suggesting the necessity of a carbonyl group for increasing the hormonal effect.  相似文献   

18.
A transient rise in the concentration of Ca2+ in the cortex upon fertilization was demonstrated in medaka eggs injected with aequorin. Detection of the aequorin luminescence with an ultra-high sensitivity photonic microscope system revealed a wave of increased Ca2+ concentration starting at the site of sperm entry (animal pole) and being propagated along the cortex of the egg toward the antipode. The wave traversed the entire egg surface within 2–3 min. The peak value of the aequorin luminescence, and therefore the peak value of the Ca2+ transient, was generally higher at the site of sperm entry than in other regions. The peak values of the luminescence (and therefore of the Ca2+ concentration in the cortex) remained fairly constant during propagation of the wave. Microinjection of Ca2+ into the cortex also induced a Ca2+ wave. When the egg was stimulated by microinjection of Ca2+ at the equatorial region, the Ca2+ wave was propagated at a fairly constant speed over the egg surface, except at the region near the vegetal pole where the wave was retarded. Simultaneous recording of the Ca2+ wave and the wave of cortical change (breakdown of cortical alveoli) in eggs during fertilization revealed that the Ca2+ wave preceded the wave of cortical change.
A Ca2+ wave was also demonstrated in sand dollar eggs, although due to their smaller size the phenomenon was not as clear as in medaka eggs.  相似文献   

19.
The binuclear copper active site of Carcinus hemocyanin has been reconstituted by incubating apohemocyanin with Cu(I) in the presence of Br- ions. At constant Cu(I) concentration the kinetics of reconstitution depends on both pH and Br- concentration. The process is faster at pH 6.0 than at pH 7.0 and in both cases the reaction is accelerated by increasing Br- concentration from 0.1 M to 0.4 M. At pH 6.0 a time-dependent inactivation of the O2-binding properties of reconstituted hemocyanin is observed. This effect is attributed to a perturbation in the active site microenvironment caused by unspecifically bound copper. Br- ions show a protective effect probably by chelating excess metal.  相似文献   

20.
The active site of [NiFe] hydrogenase is a binuclear metal complex composed of Fe and Ni atoms and is called the Ni–Fe site, where the Fe atom is known to be coordinated to three diatomic ligands. Two mass spectrometric techniques, pyrolysis-MS (pyrolysis-mass spectrometry) and TOF-SIMS (time-of-flight secondary ion mass spectrometry), were applied to several proteins, including native and denatured forms of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F, [Fe4S4]2-ferredoxin from Clostridium pasteurianum, [Fe2S2]-ferredoxin from Spirulina platensis, and porcine pepsin. Pyrolysis-MS revealed that only native hydrogenase liberated SO/SO2 (ions of m/z 48 and 64 at an equilibrium ratio of SO and SO2) at relatively low temperatures before the covalent bonds in the polypeptide moiety started to decompose. TOF-SIMS indicated that native Miyazaki hydrogenase released SO/SO2 (m/z 47.97 and 63.96) as secondary ions when irradiated with a high-energy Ga+ beam. Denatured hydrogenase, clostridial ferredoxin, and pepsin did not release SO as a secondary ion. The FT-IR spectrum of the enzyme suggested the presence of CO and CN. These lines of evidence suggest that the three diatomic ligands coordinated to the Fe atom at the Ni–Fe site in Miyazaki hydrogenase are SO, CO, and CN. The role of the SO ligand in helping to cleave H2 molecules at the active site and stabilizing the Fe atom in the diamagnetic Fe(II) state in the redox cycle of this enzyme is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号