首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock proteins (HSPs) are molecular chaperones that play a pivotal role in correct folding, stabilization and intracellular transport of many client proteins including those involved in oncogenesis. HSP70, which is frequently overexpressed in prostate cancer (PCa), has been shown to critically contribute to tumor cell survival, and might therefore represent a potential therapeutic target. We treated both the androgen receptor (AR)-positive LNCaP and the AR-negative PC-3 cell lines with the pharmacologic HSP70 inhibitor VER155008. Although we observed antiproliferative effects and induction of apoptosis upon HSP70 inhibition, the apoptotic effect was more pronounced in AR-positive LNCaP cells. In addition, VER155008 treatment induced G1 cell cycle arrest in LNCaP cells and decreased AR expression. Further analysis of the HSP system by Western blot analysis revealed that expression of HSP27, HOP and HSP90β was significantly inhibited by VER155008 treatment, whereas the HSP40, HSP60, and HSP90α expression remained unchanged. Taken together, VER155008 might serve as a novel therapeutic option in PCa patients independent of the AR expression status.  相似文献   

2.
The molecular chaperones of the Hsp70 family have been recognized as targets for anti-cancer therapy. Since several paralogs of Hsp70 proteins exist in cytosol, endoplasmic reticulum and mitochondria, we investigated which isoform needs to be down-regulated for reducing viability of cancer cells. For two recently identified small molecule inhibitors, VER-155008 and 2-phenylethynesulfonamide (PES), which are proposed to target different sites in Hsp70s, we analyzed the molecular mode of action in vitro. We found that for significant reduction of viability of cancer cells simultaneous knockdown of heat-inducible Hsp70 (HSPA1) and constitutive Hsc70 (HSPA8) is necessary. The compound VER-155008, which binds to the nucleotide binding site of Hsp70, arrests the nucleotide binding domain (NBD) in a half-open conformation and thereby acts as ATP-competitive inhibitor that prevents allosteric control between NBD and substrate binding domain (SBD). Compound PES interacts with the SBD of Hsp70 in an unspecific, detergent-like fashion, under the conditions tested. None of the two inhibitors investigated was isoform-specific.  相似文献   

3.
Two-dimensional gel electrophoresis of cytosolic proteins from mature human erythrocytes combined with immunoblotting revealed the presence of a group of heat shock proteins (HSPs) that included two molecular chaperons of the HSP70 family (HSX70, inducible; HSC70, constitutively expressed) and HSP90. As expected for cells devoid of organelles, erythrocytes do not contain stress proteins that are localized either in the mitochondria (HSP60, glucose-regulated protein (GRP 75) or in the endoplasmic reticulum (GRP78 or Ig heavy chain-binding protein, endoplasmin). Since red cells are unable to replace proteins whose structure has been damaged by environmental changes the results are taken to imply a role for chaperons in monitoring, protecting, and maintaining the structure and stability of erythrocyte proteins.  相似文献   

4.
Liver, a central organ responsible for the metabolism of carbohydrates, proteins, and lipoproteins, is exposed to various kinds of physiological, pathological, and environmental stresses. We hypothesized that blockage of proteasome degradation pathway induces heat shock protein (HSP) response and unfolded protein response in the liver cells. In this study, we have characterized cellular responses to proteasome inhibition in HepG2 cells, a well-differentiated human hepatoma cells. We found that proteasome inhibition induced differential response among cytosolic HSPs, that is, increased expression of HSP70, but no change in HSP40, HSC70, and HSP90. However, proteasome inhibition did not induce typical unfolded protein response as indicated by absence of stimulation of GRP78 and GRP94 proteins. Upon proteasome inhibition, inclusion bodies were accumulated, and ubiquitin-conjugated proteins appeared in insoluble fraction, together with HSP40, HSP70, HSC70, and HSP90. After proteasome inhibition, misfolded proteins were increased in the cytosol and in the ER compartment as evaluated by examining ubiquitin-conjugated proteins. However, essentially all ER-associated ubiquitin-conjugated proteins were located on the surface of the ER, which explains why proteasome inhibition does not induce unfolded protein response. In conclusion, proteasome inhibition induces differential HSP response, but not unfolded protein response in HepG2 cells. Our study also suggests that HSPs play important roles in directing proteasomal degradation and protein aggregate formation.  相似文献   

5.
A high percentage of oesophageal adenocarcinomas show an aggressive clinical behaviour with a significant resistance to chemotherapy. Heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) are molecular chaperones that play an important role in tumour biology. Recently, novel therapeutic approaches targeting HSP90/GRP94 have been introduced for treating cancer. We performed a comprehensive investigation of HSP and GRP expression including HSP27, phosphorylated (p)-HSP27(Ser15), p-HSP27(Ser78), p-HSP27(Ser82), HSP60, HSP70, HSP90, GRP78 and GRP94 in 92 primary resected oesophageal adenocarcinomas by using reverse phase protein arrays (RPPA), immunohistochemistry (IHC) and real-time quantitative RT-PCR (qPCR). Results were correlated with pathologic features and survival. HSP/GRP protein and mRNA expression was detected in all tumours at various levels. Unsupervised hierarchical clustering showed two distinct groups of tumours with specific protein expression patterns: The hallmark of the first group was a high expression of p-HSP27(Ser15, Ser78, Ser82) and low expression of GRP78, GRP94 and HSP60. The second group showed the inverse pattern with low p-HSP27 and high GRP78, GRP94 and HSP60 expression. The clinical outcome for patients from the first group was significantly improved compared to patients from the second group, both in univariate analysis (p = 0.015) and multivariate analysis (p = 0.029). Interestingly, these two groups could not be distinguished by immunohistochemistry or qPCR analysis. In summary, two distinct and prognostic relevant HSP/GRP protein expression patterns in adenocarcinomas of the oesophagus were detected by RPPA. Our approach may be helpful for identifying candidates for specific HSP/GRP-targeted therapies.  相似文献   

6.
We tested whether aerobic exercise training (AET) would modulate the skeletal muscle protein quality control (PQC) in a model of chronic kidney disease (CKD) in rats. Adult Wistar rats were evaluated in four groups: control (CS) or trained (CE), and 5/6 nephrectomy sedentary (5/6NxS) or trained (5/6NxE). Exercised rats were submitted to treadmill exercise (60 min., five times/wk for 2 months). We evaluated motor performance (tolerance to exercise on the treadmill and rotarod), cross‐sectional area (CSA), gene and protein levels related to the unfolded protein response (UPR), protein synthesis/survive and apoptosis signalling, accumulated misfolded proteins, chymotrypsin‐like proteasome activity (UPS activity), redox balance and heat‐shock protein (HSP) levels in the tibialis anterior. 5/6NxS presented a trend towards to atrophy, with a reduction in motor performance, down‐regulation of protein synthesis and up‐regulation of apoptosis signalling; increases in UPS activity, misfolded proteins, GRP78, derlin, HSP27 and HSP70 protein levels, ATF4 and GRP78 genes; and increase in oxidative damage compared to CS group. In 5/6NxE, we observed a restoration in exercise tolerance, accumulated misfolded proteins, UPS activity, protein synthesis/apoptosis signalling, derlin, HSPs protein levels as well as increase in ATF4, GRP78 genes and ATF6α protein levels accompanied by a decrease in oxidative damage and increased catalase and glutathione peroxidase activities. The results suggest a disruption of PQC in white muscle fibres of CKD rats previous to the atrophy. AET can rescue this disruption for the UPR, prevent accumulated misfolded proteins and reduce oxidative damage, HSPs protein levels and exercise tolerance.  相似文献   

7.
8.
Heat shock proteins (HSP) are highly conserved across eukaryotic and prokaryotic species. These proteins play a role in response to cellular stressors, protecting cells from damage and facilitating recovery. In tumor cells, HSPs can have cytoprotective effects and interfere with apoptotic cascades. This study was performed to assess the prognostic and predictive values of the gene expression of HSP family members in canine osteosarcoma (OS) and their potential for targeted therapy. Gene expressions for HSP were assessed using quantitative PCR (qPCR) on 58 snap-frozen primary canine OS tumors and related to clinic-pathological parameters. A significant increased expression of HSP60 was found in relation to shorter overall survival and an osteoblastic phenotype. Therefore, the function of HSP60 was investigated in more detail. Immunohistochemical analysis revealed heterogeneous staining for HSP60 in tumors. The highest immunoreactivity was found in tumors of short surviving dogs. Next HSP expression was shown in a variety of canine and human OS cell lines by qPCR and Western blot. In two highly metastatic cell lines HSP60 expression was silenced using siRNA resulting in decreased cell proliferation and induction of apoptosis in both cell lines. It is concluded that overexpression of HSP60 is associated with a poor prognosis of OS and should be evaluated as a new target for therapy.  相似文献   

9.
Molecular chaperones are a wide group of unrelated protein families whose role is to assist others proteins. Comparably, under environmental stress, stress proteins behave as biocatalysts of protein stabilization. Stress proteins include a large class of proteins that were originally termed heat shock proteins (HSPs) due to their initial discovery in tissues exposed to elevated temperatures. Many, but not all, stress proteins and HSPs are molecular chaperones. Moreover, not all HSPs are derivable from stress. HSPs are structurally diversified by the contribution of various domains having specific roles. HSPs have been grouped, mainly on the basis of their molecular masses, into specific families that include small HSPs (sHSPs)/alpha-crystallins, HSP10s, HSP40s, HSP60s, HSP70s, HSP90s, HSP100s and HSP110s. The names of these major families are historical artefacts with limited information content. Using the current databases, names and proteic domains of many molecular chaperones in different species were analyzed. Although traditional names of HSPs are trivial, it is unrealistic to suggest replacing them, because they are preferred and widely used. Here we suggest that these traditional names be chaperoned, in silico, by a systematic nomenclature. Thus, for example, with the same intent of use of [trioxygen: O3] for ozone, we propose here C7HSP70[Ehsa]ER-P11021 for GRP78 (78 kDa endoplasmic Human molecular chaperone in HSP70 superfamily with P11021 as its accession number in the database of the National Center for Biotechnology Information (NCBI)). The proposed systematic computer-oriented naming and classification method is designed for HSPs and also their partners based on the number of amino acids, domain structure, phylogenetic domain, localization in the cell and accession number as stated in the NCBI. Arabidopsis thaliana was analyzed as a model, because it contains a large number of various HSPs localized in several organelles. Overall, this naming system helps in building, optimizing and managing a novel online database entirely devoted to HSPs. The purported taxonomy, coupled with the newly constructed database, can contribute to studies involving large amounts of stored data on HSPs.  相似文献   

10.
Heat shock proteins HSP27, HSP70 and HSP90 are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. The cytoprotective function of HSPs is largely explained by their anti-apoptotic function. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can block essentially all apoptotic pathways, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, chromatin condensation and the activation of caspases are frequently observed. It is, therefore, not surprising that many recent reports imply HSPs in the differentiation process. This review will comment on the role of HSP90, HSP70 and HSP27 in apoptosis and cell differentiation. HSPs may determine de fate of the cells by orchestrating the decision of apoptosis versus differentiation.Key Words: apoptosis, differentiation, heat shock proteins, chaperones, cancer cells, anticancer drugs  相似文献   

11.
Stress of the endoplasmic reticulum (ER stress) is caused by the accumulation of misfolded proteins, which occurs in many neurodegenerative diseases. ER stress can lead to adaptive responses or apoptosis, both of which follow activation of the unfolded protein response (UPR). Heat shock proteins (HSP) support the folding and function of many proteins, and are important components of the ER stress response, but little is known about the role of one of the major large HSPs, HSP105. We identified several new partners of HSP105, including glycogen synthase kinase-3 (GSK3), a promoter of ER stress-induced apoptosis, and GRP78, a key component of the UPR. Knockdown of HSP105 did not alter UPR signaling after ER stress, but blocked caspase-3 activation after ER stress. In contrast, caspase-3 activation induced by genotoxic stress was unaffected by knockdown of HSP105, suggesting ER stress-specificity in the apoptotic action of HSP105. However, knockdown of HSP105 did not alter cell survival after ER stress, but instead diverted signaling to a caspase-3-independent cell death pathway, indicating that HSP105 is necessary for apoptotic signaling after UPR activation by ER stress. Thus, HSP105 appears to chaperone the responses to ER stress through its interactions with GRP78 and GSK3, and without HSP105 cell death following ER stress proceeds by a non-caspase-3-dependent process.  相似文献   

12.
Plasma membrane transporter SLC6A14 transports all neutral and basic amino acids in a Na/Cl – dependent way and it is up-regulated in many types of cancer. Mass spectrometry analysis of overexpressed SLC6A14–associated proteins identified, among others, the presence of cytosolic heat shock proteins (HSPs) and co-chaperones. We detected co-localization of overexpressed and native SLC6A14 with HSP90-beta and HSP70 (HSPA14). Proximity ligation assay confirmed a direct interaction of overexpressed SLC6A14 with both HSPs. Treatment with radicicol and VER155008, specific inhibitors of HSP90 and HSP70, respectively, attenuated these interactions and strongly reduced transporter presence at the cell surface, what resulted from the diminished level of the total transporter protein. Distortion of SLC6A14 proper folding by both HSPs inhibitors directed the transporter towards endoplasmic reticulum-associated degradation pathway, a process reversed by the proteasome inhibitor – bortezomib. As demonstrated in an in vitro ATPase assay of recombinant purified HSP90-beta, the peptides corresponding to C-terminal amino acid sequence following the last transmembrane domain of SLC6A14 affected the HSP90-beta activity. These results indicate that a plasma membrane protein folding can be controlled not only by chaperones in the endoplasmic reticulum, but also those localized in the cytosol.  相似文献   

13.
《朊病毒》2013,7(1):53-60
Heat shock proteins HSP27, HSP70 and HSP90 are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. The cytoprotective function of HSPs is largely explained by their anti-apoptotic function. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can block essentially all apoptotic pathways, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, chromatin condensation and the activation of caspases are frequently observed. It is, therefore, not surprising that many recent reports imply HSPs in the differentiation process. This review will comment on the role of HSP90, HSP70 and HSP27 in apoptosis and cell differentiation. HSPs may determine de fate of the cells by orchestrating the decision of apoptosis versus differentiation.  相似文献   

14.
BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.  相似文献   

15.
Baicalein is a new drug that has shown promising anti-cancer effects against a broad spectrum of tumors. However, the potential effect on osteosarcoma cells and the mechanisms involved are still largely unknown. Resistance to chemotherapy remains a major obstacle in cancer therapy. Therefore, the aim of the present study was to investigate the anti-tumor effect of baicalein on human osteosarcoma cancer cells and the molecular mechanism involved, as well as identify possible mechanisms of drug resistance. Our results revealed that baicalein-induced apoptosis in osteosarcoma cells was via a mitochondrial pathway involving both caspase-dependent and independent mechanisms. Notably, baicalein treatment upregulated the expression of HSP70, which partially prevented human osteosarcoma cells from undergoing apoptosis. Moreover, it was revealed that HSP70 expression decreased the sensitivity of osteosarcoma cells to baicalein via activation of PI3K/AKT and MAPK/ERK pathways. These results suggest that targeting HSP70-mediated drug resistance, in combination with chemotherapy drugs, may provide novel therapeutic opportunities.  相似文献   

16.
Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis.  相似文献   

17.
Although inhibition of the ubiquitin proteasome system has been postulated to play a key role in the pathogenesis of neurodegenerative diseases, studies have also shown that proteasome inhibition can induce increased expression of neuroprotective heat-shock proteins (HSPs). The global gene expression of primary neurons in response to treatment with the proteasome inhibitor lactacystin was studied to identify the widest range of possible pathways affected. Our results showed changes in mRNA abundance, both at different time points after lactacystin treatment and at different lactacystin concentrations. Genes that were differentially up-regulated at the early time point but not when most cells were undergoing apoptosis might be involved in an attempt to reverse proteasome inhibitor-mediated apoptosis and include HSP70, HSP22 and cell cycle inhibitors. The up-regulation of HSP70 and HSP22 appeared specific towards proteasome inhibitor-mediated cell death. Overexpression of HSP22 was found to protect against proteasome inhibitor-mediated loss of viability by up to 25%. Genes involved in oxidative stress and the inflammatory response were also up-regulated. These data suggest an initial neuroprotective pathway involving HSPs, antioxidants and cell cycle inhibitors, followed by a pro-apoptotic response possibly mediated by inflammation, oxidative stress and aberrant activation of cell cycle proteins.  相似文献   

18.
Heat shock proteins (HSPs) are involved in a variety of intracellular processes and can have both pro- and anti-apoptotic action. However, little is known about the role of HSPs in the progression of apoptosis. Translocation of HSPs to the surface of apoptotic cells is a previously observed phenomenon demonstrating participation of these proteins in execution of the terminal stages of apoptosis. In a previous study we showed that development of EL-4 lymphoma cell apoptosis in vitro is accompanied by elevation of surface HSP expression. In this study we used this model to analyse the relationship of HSP70 expression and its translocation to the cell surface during apoptosis with some key intracellular events. Our data demonstrate a synchronization of surface and intracellular HSP70 expression with bcl-2 expression, intracellular reactive oxygen species (ROS) concentration and caspase-3 activity. A maximum level of surface and intracellular HSP70 expression was observed at an irreversible phase of EL-4 cell apoptosis after mitochondrial potential depolarization. In addition, an enhancement of the relative level of cytoplasmic HSP70 translocation to the cell surface was concomitant with EL-4 cell apoptosis. However, the size of surface and intracellular pools of HSP70, increasing for initial and intermediate stages of cell death, decreased at the terminal phase of apoptosis. Western blot analysis of HSP70 in conditioned supernatant obtained from EL-4 cell tissue showed that the observed decrease of HSP70 cell content might be due to surface HSP70 shedding into the intercellular space.  相似文献   

19.
Pan YX  Ren AJ  Zheng J  Rong WF  Chen H  Yan XH  Wu C  Yuan WJ  Lin L 《Life sciences》2007,81(13):1042-1049
Hypoxic preconditioning (HPC) has been well demonstrated to have potent protective effects in many cell types; however, the mechanisms responsible for this phenomenon are not fully understood. Recently, glucose-regulated protein 78 (GRP78), an inducible molecular chaperon, was indicated to be associated with ischemic preconditioning. We hypothesized that HPC protects cardiomyocytes against hypoxia by inducing GRP78 in cultured neonatal rat cardiomyocytes. HPC was induced by exposing cardiomyocytes to brief hypoxia (1% O(2), 30 min) followed by reoxygenation. GRP78 was expressed constitutively in cultured cardiomyocytes and its expression was enhanced at 12 h, peaked at 24 h (207.3+/-23.6% of the baseline), and was sustained for up to 72 h after HPC. Twenty-four hours after HPC, the myocytes were subjected to prolonged hypoxia (1% O(2), 12 h). The lactic dehydrogenase (LDH) release and malondialdehyde (MDA) content were reduced, while cell viability and superoxide dismutase (SOD) activity were increased in the preconditioned cells compared with the non-HPC cells. The GRP78 protein level was higher in cells exposed to both HPC and hypoxia than in the cells exposed to HPC alone or hypoxia alone. Heat shock protein 70 (HSP70) was induced in parallel by late HPC. Transfection of GRP78 antisense oligonucleotides blocked GRP78 expression but not HSP70, resulting in attenuated cardioprotection afforded by late HPC. Furthermore, inducing GRP78 by gene transfer protected cardiomyocytes from hypoxic injury. These findings demonstrate that the induction of GRP78 partially mediates the late HPC, suggesting that GRP78 is a novel mechanism responsible for the late cytoprotection of HPC.  相似文献   

20.
To further elucidate the role of the constitutive heat shock protein-70 (HSC70) as a chaperone for the synthesis of myelin basic protein (MBP), HSC70 content was decreased in oligodendrocyte precursor cells prior to MBP expression either by transfection with an antisense oligonucleotide specific for HSC70, or by exposure to low levels of quercetin, a bioflavonoid known to decrease synthesis of HSC70. As these cells underwent differentiation in vitro, antisense treatment decreased HSC70 levels to 66% of controls. At the same time, a sharp induction resulted in the stress-inducible heat shock protein-70 (HSP70). Levels of two other stress proteins increased as well, namely, the 25-kDa heat shock protein (HSP25) and the 78-kDa glucose regulated protein (GRP78). MBP synthesis proceeded over a normal time course, but at only 50% of control values. As HSC70 content returned to normal, MBP synthesis was also restored to normal levels. Quercetin reduced the expression of HSC70 to an even greater extent than transfection, and prevented the induction of HSP70. In contrast to antisense-treated cells, MBP synthesis was essentially blocked in quercetin-treated cells even though levels of HSP25 and GRP78 increased. Taken together, these observations (a) indicate that HSP70 partially compensates for decreased chaperoning of nascent MBP by HSC70 (HSC70 and HSP70 are closely related and perform similar functions); (b) preclude the involvement of HSP25 and GRP78 in MBP synthesis; and (c) emphasize the requirement of HSC70 for optimal synthesis of MBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号