首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some properties of human small heat shock protein Hsp20 (HspB6).   总被引:2,自引:0,他引:2  
Human heat shock protein of apparent molecular mass 20 kDa (Hsp20) and its mutant, S16D, mimicking phosphorylation by cyclic nucleotide-dependent protein kinases, were cloned and expressed in Escherichia coli. The proteins were obtained in a homogeneous state without utilization of urea or detergents. On size exclusion chromatography at neutral pH, Hsp20 and its S16D mutant were eluted as symmetrical peaks with an apparent molecular mass of 55-60 kDa. Chemical crosslinking resulted in the formation of dimers with an apparent molecular mass of 42 kDa. At pH 6.0, Hsp20 and its S16D mutant dissociated, and were eluted in the form of two peaks with apparent molecular mass values of 45-50 and 28-30 kDa. At pH 7.0-7.5, the chaperone activity of Hsp20 (measured by its ability to prevent the reduction-induced aggregation of insulin or heat-induced aggregation of yeast alcohol dehydrogenase) was similar to or higher than that of commercial alpha-crystallin. Under these conditions, the S16D mutant of Hsp20 possessed lower chaperone activity than the wild-type protein. At pH 6.0, both alpha-crystallin and Hsp20 interacted with denatured alcohol dehydrogenase; however, alpha-crystallin prevented, whereas Hsp20 either did not affect or promoted, the heat-induced aggregation of alcohol dehydrogenase. The mixing of wild-type human Hsp27 and Hsp20 resulted in a slow, temperature-dependent formation of hetero-oligomeric complexes, with apparent molecular mass values of 100 and 300 kDa, which contained approximately equal amounts of Hsp27 and Hsp20 subunits. Phosphorylation of Hsp27 by mitogen activated protein kinase-activated protein kinase 2 was mimicked by replacing Ser15, 78 and 82 with Asp. A 3D mutant of Hsp27 mixed with Hsp20 rapidly formed a hetero-oligomeric complex with an apparent molecular mass of 100 kDa, containing approximately equal quantities of two small heat shock proteins.  相似文献   

2.
Formation of heterooligomeric complexes of human small heat shock proteins (sHsp) HspB6 (Hsp20) and HspB1 (Hsp27) was analyzed by means of native gel electrophoresis, analytical ultracentrifugation, chemical cross-linking and size-exclusion chromatography. HspB6 and HspB1 form at least two different complexes with apparent molecular masses 100–150 and 250–300 kDa, and formation of heterooligomeric complexes is temperature dependent. These complexes are highly mobile, easily exchange their subunits and are interconvertible. The stoichiometry of HspB1 and HspB6 in both complexes is close to 1/1 and smaller complexes are predominantly formed at low, whereas larger complexes are predominantly formed at high protein concentration. Formation of heterooligomeric complexes does not affect the chaperone-like activity of HspB1 and HspB6 if insulin or skeletal muscle F-actin was used as model protein substrates. After formation of heterooligomeric complexes the wild type HspB1 inhibits the rate of phosphorylation of HspB6 by cAMP-dependent protein kinase. The 3D mutant mimicking phosphorylation of HspB1 also forms heterooligomeric complexes with HspB6, but is ineffective in inhibition of HspB6 phosphorylation. Inside of heterooligomeric complexes HspB6 inhibits phosphorylation of HspB1 by MAPKAP2 kinase. Thus, in heterooligomeric complexes HspB6 and HspB1 mutually affect the structure of each other and formation of heterooligomeric complexes might influence diverse processes depending on small heat shock proteins.  相似文献   

3.
Some properties of human small heat shock protein Hsp22 (H11 or HspB8)   总被引:7,自引:0,他引:7  
Untagged recombinant human small heat shock protein with apparent molecular mass 22 kDa (Hsp22) was obtained in homogeneous state. Size exclusion chromatography and chemical crosslinking with dimethylsuberimidate indicate that Hsp22 forms stable dimers. Being highly susceptible to oxidation Hsp22 forms disulfide crosslinked dimers and poorly soluble high molecular mass oligomers. According to CD spectroscopy oxidation of Hsp22 results in disturbing of both secondary and tertiary structure. Hsp22 possesses a negligibly low autophosphorylation activity and under the conditions used is unable to phosphorylate casein or histone. Hsp22 effectively prevents heat-induced aggregation of yeast alcohol dehydrogenase and bovine liver rhodanese with chaperone activity comparable to that of recombinant human small heat shock protein with apparent molecular mass 20 kDa (Hsp20).  相似文献   

4.
The recently published review by Dreiza et al. (Cell Stress and Chaperones DOI ) dealing with the functional role of HSPB6 in muscle regulation is critically analyzed. Published data indicate that the chaperone-like activity of HSPB6 is comparable with that of HSPB5 and that phosphorylation of HSPB6 does not affect its oligomeric structure. Different hypotheses concerning the molecular mechanisms of HSPB6 action on smooth muscle contraction and on the reorganization of the cytoskeleton are compared, and it is concluded that although HSPB6 is not a genuine actin-binding protein, it can affect the actin cytoskeleton indirectly. Phosphorylated HSPB6 interacts with 14-3-3 and thereby displaces other binding partners of 14-3-3; among them, certain phosphatases, protein kinases, and various actin-binding proteins, which can participate in the reorganization of the actin cytoskeleton. In addition, HSPB6 seems to regulate the activity of certain protein kinases. All of these processes are dependent on HSPB6 phosphorylation which in turn might be regulated by the formation of heterooligomeric complexes of HSPB6 with other small heat shock proteins.  相似文献   

5.
A number of phosphomimicking mutants (replacement of Ser/Thr residues by Asp) of human small heat shock protein HspB8 were obtained and phosphorylation of the wild type HspB8 and its mutants by ERK1 kinase was analyzed in vitro. Mutation S159D does not affect phosphorylation, whereas mutations S24D and S27D equally moderately inhibited and mutation T87D strongly inhibited phosphorylation of HspB8. The double mutations S24D/T87D and S27D/T87D induced very strong inhibitory effect and the triple mutations S24D/S27D/T87D completely prevented phosphorylation catalyzed by ERK1. Thus, Ser24 and Thr87, found to be phosphorylated in vivo, are among the sites phosphorylated by ERK1 in HspB8 in vitro. Mutations S24D and T87D affect intrinsic tryptophan fluorescence and susceptibility to chymotrypsinolysis of HspB8. Phosphomimicking mutations and phosphorylation promote concentration-dependent association of HspB8 subunits. Mutations S24D and S27D decrease, whereas mutation T87D increases the chaperone-like activity of HspB8. It is concluded that phosphorylation catalyzed by ERK1 might affect the structure and chaperone-like activity of HspB8 and therefore can be important for regulation of interaction of HspB8 with different target proteins.  相似文献   

6.
Phosphorylation of heat shock protein 20 (Hsp20) by protein kinase A (PKA) is now recognized as an important regulatory mechanism modulating contractile activity in the human myometrium. Thus agonists that stimulate cyclic AMP production may cause relaxation with resultant beneficial effects on pathologies that affect this tissue such as the onset of premature contractions prior to term. Here we describe for the first time that acetylation of Hsp20 is also a potent post-translational modification that can affect human myometrial activity. We show that histone deacetylase 8 (HDAC8) is a non-nuclear lysine deacetylase (KDAC) that can interact with Hsp20 to affect its acetylation. Importantly, use of a selective linkerless hydroxamic acid HDAC8 inhibitor increases Hsp20 acetylation with no elevation of nuclear-resident histone acetylation nor marked global gene expression changes. These effects are associated with significant inhibition of spontaneous and oxytocin-augmented contractions of ex vivo human myometrial tissue strips. A potential molecular mechanism by which Hsp20 acetylation can affect myometrial activity by liberating cofilin is described and further high-lights the use of specific effectors of KDACs as therapeutic agents in regulating contractility in this smooth muscle.  相似文献   

7.
The recently described protein denoted H11, Hsp22 or HspB8 seems to participate in regulation of proliferation, apoptosis, and cardiac hypertrophy. Mutation of Hsp22 causes distal motor neuropathy. Multitude action of Hsp22 is supposed to be due to its protein kinase and/or chaperone-like activities. There are many indirect evidences indicating that Hsp22 possesses intrinsic protein kinase activity. However, low homology to protein kinases, low extent of autophosphorylation, lack of significant protein kinase activity with commonly used substrates, and lack of information on stoichiometry, kinetics, and substrate specificity make the existence of intrinsic protein kinase activity of Hsp22 questionable. It is supposed that protein kinase activity ascribed to Hsp22 is due to contaminating protein kinases. Hsp22 is highly homologous to small heat shock proteins and effectively prevents aggregation of denatured protein both in vitro and in vivo. Therefore, it is supposed that chaperone-like activity is of great importance for Hsp22 functioning.  相似文献   

8.
Interaction of human Bag3 with small heat shock proteins HspB6, HspB8 and its K141E mutant was analyzed by different biochemical methods. The data of size-exclusion chromatography indicate that the wild type HspB8 forms tight complexes with Bag3. K141E mutant of HspB8 and especially HspB6 weaker interact with Bag3. The data of chemical crosslinking and analytical ultracentrifugation indicate that in vitro the stoichiometry of complexes formed by HspB8 and Bag3 is variable and is dependent on concentration of protein partners. Interaction of Bag3 and HspB8 is accompanied by increase of thermal stability measured by intrinsic tryptophan fluorescence and increased resistance to limited chymotrypsinolysis. The data of size-exclusion chromatography, analytical ultracentrifugation and limited proteolysis indicate that Bag3 belongs to the group of intrinsically disordered proteins. It is supposed that having unordered structure Bag3 might weakly interact with different small heat shock proteins which recognize unfolded proteins and this interaction is especially strong with intrinsically disordered HspB8. The complexes formed by Bag3 and HspB8 might have variable stoichiometry and can participate in different processes including clearing of the cell from improperly folded proteins.  相似文献   

9.
Heat shock protein 27 (Hsp27) is a stress-inducible protein in cells that functions as a molecular chaperone and also as an anti-apoptotic protein. Methylglyoxal (MGO) is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins to form products such as argpyrimidine. We found considerable amount of Hsp27 in phosphorylated form (pHsp27) in human cataractous lenses. pHsp27 was the major argpyrimidine-modified protein in brunescent cataractous lenses. Modification by MGO enhanced the chaperone function of both pHsp27 and native Hsp27, but the effect on Hsp27 was at least three-times greater than on pHsp27. Phosphorylation of Hsp27 abolished its chaperone function. Transfer of Hsp27 using a cationic lipid inhibited staurosporine (SP)-induced apoptotic cell death by 53% in a human lens epithelial cell line (HLE B-3). MGO-modified Hsp27 had an even greater effect (62% inhibition). SP-induced reactive oxygen species in HLE-B3 cells was significantly lower in cells transferred with MGO-modified Hsp27 when compared to native Hsp27. In vitro incubation experiments showed that MGO-modified Hsp27 reduced the activity of caspase-9, and MGO-modified pHsp27 reduced activities of both caspase-9 and caspase-3. Based on these results, we propose that Hsp27 becomes a better anti-apoptotic protein after modification by MGO, which may be due to multiple mechanisms that include enhancement of chaperone function, reduction in oxidative stress, and inhibition of activity of caspases. Our results suggest that MGO modification and phosphorylation of Hsp27 may have important consequences for lens transparency and cataract development.  相似文献   

10.
The human genome encodes ten different small heat shock proteins, each of which contains the so-called alpha-crystallin domain consisting of 80-100 residues and located in the C-terminal part of the molecule. The alpha-crystallin domain consists of six or seven beta-strands connected by different size loops and combined in two beta-sheets. Mutations in the loop connecting the beta5 and beta7 strands and conservative residues of beta7 in alphaA-, alphaB-crystallin and HSP27 correlate with the development of different congenital diseases. To understand the role of this part of molecule in the structure and function of small heat shock proteins, we mutated two highly conservative residues (K137 and K141) of human HSP22 and investigated the properties of the K137E and K137,141E mutants. These mutations lead to a decrease in intrinsic Trp fluorescence and the double mutation decreased fluorescence resonance energy transfer from Trp to bis-ANS bound to HSP22. Mutations K137E and especially K137,141E lead to an increase in unordered structure in HSP22 and increased susceptibility to trypsinolysis. Both mutations decreased the probability of dissociation of small oligomers of HSP22, and mutation K137E increased the probability of HSP22 crosslinking. The wild-type HSP22 possessed higher chaperone-like activity than their mutants when insulin or rhodanase were used as the model substrates. Because conservative Lys residues located in the beta5-beta7 loop and in the beta7 strand appear to play an important role in the structure and properties of HSP22, mutations in this part of the small heat shock protein molecule might have a deleterious effect and often correlate with the development of different congenital diseases.  相似文献   

11.
Recently, we have described the developmental expression of the small heat shock proteins (sHsps) Hsp27/HspB1 and alphaB-crystallin/HspB5 in different tissues of pigs from almost full-term foetuses to three years old adults (P. Tallot, J. F. Grongnet, J. C. David, Biol. Neonate, 83, 281-288, 2003). The data described in this report extends this study to four other members of the sHsp family (Hsp20/HspB6, cvHsp/HspB7, MKBP/HspB2 and HspB8). We studied expression of these proteins in porcine lens, brain, heart, liver, kidney, lung, skeletal muscle, stomach, and colon, and found a ubiquitous expression of Hsp20 and HspB8 as earlier reported for Hsp27 and alphaB-crystallin. In contrast, cvHsp and HspB2 expression is essentially restricted to heart and muscle. During development, the sHsps tend to (temporarily) increase in stomach, liver, lung, kidney, hippocampus, and striatum, while expression in heart is more or less constant, and a large variation is found in sHsp expression patterns in skeletal muscle. In cerebellum and cortex a temporary decrease of Hsp20 and HspB8 is observed directly after birth. The major impact of this study is that each tissue seems to have a unique profile of sHsp expression, which varies during development and may reflect the need of a particular tissue to maintain at all stages an optimal chaperoning machinery to protect against physiological stress.  相似文献   

12.
13.
Temperature-induced conformational changes of reduced and oxidized HspB1 crosslinked by disulfide bond between single Cys137 of neighboring monomers were analyzed by means of different techniques. Heating of reduced HspB1 was accompanied by irreversible changes of Trp fluorescence, whereas oxidized HspB1 underwent completely reversible changes of fluorescence. Increase of the temperature in the range of 20–70 °C was accompanied by self-association of both reduced and oxidized protein. Further increase of the temperature led to formation of heterogeneous mixture of large self-associated complexes of reduced HspB1 and to formation of smaller and less heterogeneous complexes of oxidized HspB1. Heat-induced changes of oligomeric state of reduced HspB1 were only partially reversible, whereas the corresponding changes of oligomeric state of oxidized HspB1 were almost completely reversible. Oxidation resulted in decrease of chaperone-like activity of HspB1. It is concluded that oxidative stress, inducing formation of disulfide bond, can affect stability and conformational mobility of human HspB1.  相似文献   

14.
Some binary mixtures of cholesterol and phospholipids in monolayers have thermodynamic phase diagrams with two upper miscibility critical points. This feature has been interpreted in terms of 'condensed complexes' between the phospholipid and cholesterol. The present work gives evidence for the formation of complexes with a common simple integral stoichiometry in binary mixtures of cholesterol and a series of five sphingomyelins where the amide-linked acyl chain length is varied. This indicates that these complexes have a distinct geometry even though they form a liquid phase.  相似文献   

15.
It has been previously reported that phosphorylated cofilin interacted with 14-3-3ζ protein to generate a sub-micromolar K(d) binary complex. Here we challenge this hypothesis by analyzing the direct association of recombinant cofilin with 14-3-3ζ using different in vitro biochemical methods. Phosphorylated cofilin at high concentration binds to 14-3-3 immobilized on nitrocellulose, however no complex formation was detected by means of native gel electrophoresis or chemical crosslinking. Intact dimeric or mutant monomeric 14-3-3 was unable to form stable complexes with phosphorylated or unphosphorylated cofilin detected by size-exclusion chromatography. In co-sedimentation assay 14-3-3 did not affect interaction of cofilin with F-actin. The data of native gel electrophoresis indicate that 14-3-3 did not affect interaction of cofilin with G-actin. Thus, cofilin only weakly interacts with 14-3-3 and therefore cannot directly compete with phosphorylated small heat shock protein HspB6 for its binding to 14-3-3. It is hypothesized that phosphorylated HspB6 might affect interaction of 14-3-3 with protein phosphatases (and/or protein kinases) involved in dephosphorylation (or phosphorylation) of cofilin and by this means regulate cofilin-dependent reorganization of cytoskeleton.  相似文献   

16.
ATP-independent small heat-shock proteins (sHSPs) are an essential component of the cellular chaperoning machinery. Under both normal and stress conditions, sHSPs bind partially unfolded proteins and prevent their irreversible aggregation. Canonical vertebrate sHSPs, such as the α-crystallins, form large polydisperse oligomers from which smaller, functionally active subspecies dissociate. Here we focus on human HSPB6 which, despite having considerable homology to the α-crystallins in both the N-terminal region and the signature α-crystallin domain (ACD), only forms dimers in solution that represent the basic chaperoning subspecies. We addressed the three-dimensional structure and functional properties of HSPB6 in a hybrid study employing X-ray crystallography, solution small-angle X-ray scattering (SAXS), mutagenesis, size-exclusion chromatography and chaperoning assays. The crystal structure of a proteolytically stable fragment reveals typical ACD dimers which further form tetrameric assemblies as a result of extensive inter-dimer patching of the β4/β8 grooves. The patching is surprisingly mediated by tripeptide motifs, found in the N-terminal domain directly adjacent to the ACD, that are resembling but distinct from the canonical IxI sequence commonly binding this groove. By combining the crystal structure with SAXS data for the full-length protein, we derive a molecular model of the latter. In solution, HSPB6 shows a strong attractive self-interaction, a property that correlates with its chaperoning activity. Both properties are dictated by the unstructured yet compact N-terminal domain, specifically a region highly conserved across vertebrate sHSPs.  相似文献   

17.
18.
19.
McHaourab HS  Lin YL  Spiller BW 《Biochemistry》2012,51(25):5105-5112
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.  相似文献   

20.
Methylglyoxal (MG) is one of the side-products in glycolysis, and it reacts with proteins under physiological conditions. Here, we identified heat-shock protein 27 (Hsp27) as a major MG-modified protein in cells. MG modification of Hsp27 selectively occurs at Arg-188 to form argpyrimidine, and mutation in the residue represses the formation of a large oligomer. This modification process is essential to its repressing activity for cytochrome c-mediated caspase activation. Inhibition of MG modification of Hsp27 causes sensitization of the cells to anti-tumor drug-induced apoptosis. Thus, MG is a novel modulator of cell survival by directly incorporating with the specific protein residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号