首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the potential association of heat stress resistance with HspB1 induction by aspirin (ASA) in chicken myocardial cells, variations of HspB1 expression and heat stressed-induced damage of myocardial cells after ASA administration were studied in primary cultured myocardial cells. Cytopathological lesions as well as damage-related enzymes, such as creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), indicated the considerable protective ability of ASA pre-treatment against acute heat stress. Immunostaining assays showed that heat stress caused HspB1 to relocate into the nucleus, while ASA did not. ELISA analysis, revealed that HspB1 expression induced by ASA averaged 45.62-fold higher than that of the control. These results indicated that the acute heat-stressed injuries were accompanied by comparatively lower HspB1 expression caused by heat stress in vitro. ASA pre-treatment induced a level of HspB1 presumed to be sufficient to protect myocardial cells from acute heat stress in the extracorporal model, although more detailed mechanisms will require further investigation.  相似文献   

2.
Salicylic acid (SA) is reported to protect plants from heat shock (HS), but insufficient is known about its role in thermotolerance or how this relates to SA signaling in pathogen resistance. We tested thermotolerance and expression of pathogenesis-related (PR) and HS proteins (HSPs) in Arabidopsis thaliana genotypes with modified SA signaling: plants with the SA hydroxylase NahG transgene, the nonexpresser of PR proteins (npr1) mutant, and the constitutive expressers of PR proteins (cpr1 and cpr5) mutants. At all growth stages from seeds to 3-week-old plants, we found evidence for SA-dependent signaling in basal thermotolerance (i.e. tolerance of HS without prior heat acclimation). Endogenous SA correlated with basal thermotolerance, with the SA-deficient NahG and SA-accumulating cpr5 genotypes having lowest and highest thermotolerance, respectively. SA promoted thermotolerance during the HS itself and subsequent recovery. Recovery from HS apparently involved an NPR1-dependent pathway but thermotolerance during HS did not. SA reduced electrolyte leakage, indicating that it induced membrane thermoprotection. PR-1 and Hsp17.6 were induced by SA or HS, indicating common factors in pathogen and HS responses. SA-induced Hsp17.6 expression had a different dose-response to PR-1 expression. HS-induced Hsp17.6 protein appeared more slowly in NahG. However, SA only partially induced HSPs. Hsp17.6 induction by HS was more substantial than by SA, and we found no SA effect on Hsp101 expression. All genotypes, including NahG and npr1, were capable of expression of HSPs and acquisition of HS tolerance by prior heat acclimation. Although SA promotes basal thermotolerance, it is not essential for acquired thermotolerance.  相似文献   

3.
Ischemic stroke leads to cellular dysfunction, cell death, and devastating clinical outcomes. The cells of the brain react to such a cellular stress by a stress response with an upregulation of heat shock proteins resulting in activation of endogenous neuroprotective capacities. Several members of the family of small heat shock proteins (HspBs) have been shown to be neuroprotective. However, yet no systematic study examined all HspBs during cerebral ischemia. Here, we performed a comprehensive comparative study comprising all HspBs in an animal model of stroke, i.e., 1 h transient middle cerebral artery occlusion followed by 23 h of reperfusion. On the mRNA level out of the 11 HspBs investigated, HspB1/Hsp25, HspB3, HspB4/αA-crystallin, HspB5/αB-crystallin, HspB7/cvHsp, and HspB8/Hsp22 were significantly upregulated in the peri-infarct region of the cerebral cortex of infarcted hemispheres. HspB1 and HspB5 reached the highest mRNA levels and were also upregulated at the protein level, suggesting that these HspBs might be functionally most relevant. Interestingly, in the infarcted cortex, both HspB1 and HspB5 were mainly allocated to neurons and to a lesser extent to glial cells. Additionally, both proteins were found to be phosphorylated in response to ischemia. Our data suggest that among all HspBs, HspB1 and HspB5 might be most important in the neuronal stress response to ischemia/reperfusion injury in the brain and might be involved in neuroprotection.  相似文献   

4.
Although prior heat stress (HS) inhibits apoptosis in adenosine phosphate (ATP)-depleted renal epithelial cells (REC), the specific stress protein(s) responsible for cytoprotection have not been identified. The present study evaluated the hypothesis that Hsp72, the major inducible member of the Hsp70 family, protects REC against ATP depletion injury. In the presence of isopropyl-beta-D-thiogalactoside (IPTG), a stable line of transfected opossum kidney cells was induced to overexpress human Hsp72 tagged with the flag epitope. Transfected cells from 2 clones that expressed Hsp72 at a level comparable with wild-type cells were subjected to transient heat stress (43 degrees C for 1 hour). To assess the cytoprotective effect of Hsp72, transfected cells were subjected to transient ATP depletion followed by recovery in the presence vs the absence of IPTG. ATP depletion resulted in nuclear chromatin condensation without cell membrane injury (ie, minimal leak of lactate dehydrogenase) and activation of caspase-3, confirming that apoptosis is the major cause of cell death. In both clones cell survival 1-3 days after ATP depletion was significantly improved in the presence of IPTG. Selective overexpression of Hsp72 reproduced nearly 60% of the protective effect on the survival afforded by prior heat stress. In transfected cells subjected to ATP depletion, Hsp72 overexpression significantly inhibited caspase activation. In native renal cells brief ATP depletion markedly induced the expression of native Hsp72, a finding identical to that observed after renal ischemia in vivo. These studies are the first to directly show that Hsp72 per se mediates acquired resistance to ischemic injury in REC.  相似文献   

5.
Heat shock proteins (Hsps) are highly conserved proteins that are induced in response to various physiological and environmental stressors. HspB1 (Hsp27) is a prominent member of the small Hsps family and is strongly induced during the stress response. Notably, HspB1 has powerful neuroprotective effects, increasing the survival of cells subjected to cytotoxic stimuli. This is especially relevant to the study of the retina, where cells are subject to death due to retinal disease and injury. While HspB1 shows constitutive expression in some areas of the mammalian retina, of particular interest is the upregulation of the protein in response to ischemia and oxidative stress, traumatic nerve injury, and elevated intraocular pressure and glaucoma. Several mechanisms have been proposed to account for the cytoprotective actions of HspB1, including its role as a molecular chaperone, a stabilizer of the cytoskeleton, and a regulator of apoptosis. This review will focus on the role of HspB1 in the retina, emphasizing effects on retinal ganglion cells, by analyzing the expression, induction by stressors, and mechanisms of its neuroprotective function. Finally, the potential of HspB1 as a clinical therapeutic will be examined.  相似文献   

6.
AimsWe previously found that paeoniflorin, a major constituent of Paeonia lactiflora Pall, could induce heat shock proteins (HSPs) in cultured mammalian cells without apparent toxicity (Yan et al. 2004). We here investigated the induction of HSPs by paeoniflorin in mouse stomach and the effect of paeoniflorin on the HCl- and ethanol-triggered gastric mucosal injury in mouse.Main methodsPaeoniflorin and quercetin were intraperitoneally administered in mouse and Hsp70 and other proteins in mouse tissues were detected by western blotting.Key findingsThe intraperitoneal administration of paeoniflorin clearly induced Hsp70 in mouse stomach, and paeoniflorin had a protective effect on the HCl- and ethanol-triggered gastric mucosal injury. When quercetin was injected before paeoniflorin administration, the induction of Hsp70 was suppressed and the protective effect of paeoniflorin was also diminished. Thus, the expression level of Hsp70 was well correlated with the extent of protection against irritant-induced gastric mucosal injury. Oral injection of HCl activated nuclear factor kappa B (NF-κB) and elicited the expression of cyclooxygenase-2 (COX-2) in gastric mucosa. Prior administration of paeoniflorin, however, suppressed these effects. No apparent systemic side effect of paeoniflorin has been observed so far. Hsp70 was also induced in the liver, heart, and brain by paeoniflorin.SignificanceFrom these results, it is suggested that paeoniflorin and paeoniflorin-containing herbal medicines might be used clinically as HSP inducers for the prevention and treatment of diseases associated with protein conformation and of various other pathological states, such as stress ulcers and irritant- or ischemia-induced injuries.  相似文献   

7.
8.
In vitro, small Hsps (heat-shock proteins) have been shown to have chaperone function capable of keeping unfolded proteins in a form competent for Hsp70-dependent refolding. However, this has never been confirmed in living mammalian cells. In the present study, we show that Hsp27 (HspB1) translocates into the nucleus upon heat shock, where it forms granules that co-localize with IGCs (interchromatin granule clusters). Although heat-induced changes in the oligomerization status of Hsp27 correlate with its phosphorylation and nuclear translocation, Hsp27 phosphorylation alone is not sufficient for effective nuclear translocation of HspB1. Using firefly luciferase as a heat-sensitive reporter protein, we demonstrate that HspB1 expression in HspB1-deficient fibroblasts enhances protein refolding after heat shock. The positive effect of HspB1 on refolding is completely diminished by overexpression of Bag-1 (Bcl-2-associated athanogene), the negative regulator of Hsp70, consistent with the idea of HspB1 being the substrate holder for Hsp70. Although HspB1 and luciferase both accumulate in nuclear granules after heat shock, our results suggest that this is not related to the refolding activity of HspB1. Rather, granular accumulation may reflect a situation of failed refolding where the substrate is stored for subsequent degradation. Consistently, we found 20S proteasomes concentrated in nuclear granules of HspB1 after heat shock. We conclude that HspB1 contributes to an increased chaperone capacity of cells by binding unfolded proteins that are hereby kept competent for refolding by Hsp70 or that are sorted to nuclear granules if such refolding fails.  相似文献   

9.
10.
Induction of the heat shock proteins (HSPs) is involved in the increased resistance to cancer therapies such as chemotherapy and hyperthermia. We used two human ovarian cancer cell lines; a cisplatin (CDDP)-sensitive line A2780 and its CDDP-resistant derivative, A2780CP. The concentration of intracellular glutathione (GSH) is higher (2.7-fold increase) in A2780CP cells than in A2780 cells. A mild treatment with a heat stress (42 degrees C for 30 min) induced synthesis of both the heat shock protein 72 (Hsp72) mRNA and the HSP72 protein in A2780CP cells, but not in A2780 cells. In contrast, a severe heat stress (45 degrees C for 30 min) increased synthesis of the HSP72 protein in the two cell lines. The induced level of the HSP72 protein by the severe treatment was higher in A2780CP than in A2780 cells. The gel mobility shift assay showed that DNA binding activities of the heat shock factor (HSF) in the two cell lines were induced similarly and significantly by the mild heat stress. Immunocytochemistry using an anti HSF1 antibody also indicated that mild heat stress activated the HSF1 translocation from the cytosol to the nucleus similarly in the both cell lines. Pretreatment of CDDP-sensitive A2780 cells with N-acetyl-L-cysteine, a precursor of GSH, effectively enhanced induction of the Hsp72 mRNA by the mild heat stress. The present findings demonstrate that induction of the Hsp72 mRNA by the mild heat stress was more extensive in CDDP-resistant A2780CP cells. It is likely that the higher GSH concentration in A2780CP cells plays an important role in promoting Hsp72 gene expression induced by the mild heat stress probably through processes downstream of activation of HSF-DNA binding.  相似文献   

11.
Alport syndrome is a hereditary glomerulopathy with proteinuria and nephritis caused by defects in genes encoding type IV collagen in the glomerular basement membrane. All male and most female patients develop end-stage renal disease. Effective treatment to stop or decelerate the progression of proteinuria and nephritis is still under investigation. Here we showed that combination treatment of mild electrical stress (MES) and heat stress (HS) ameliorated progressive proteinuria and renal injury in mouse model of Alport syndrome. The expressions of kidney injury marker neutrophil gelatinase-associated lipocalin and pro-inflammatory cytokines interleukin-6, tumor necrosis factor-α and interleukin-1β were suppressed by MES+HS treatment. The anti-proteinuric effect of MES+HS treatment is mediated by podocytic activation of phosphatidylinositol 3-OH kinase (PI3K)-Akt and heat shock protein 72 (Hsp72)-dependent pathways in vitro and in vivo. The anti-inflammatory effect of MES+HS was mediated by glomerular activation of c-jun NH(2)-terminal kinase 1/2 (JNK1/2) and p38-dependent pathways ex vivo. Collectively, our studies show that combination treatment of MES and HS confers anti-proteinuric and anti-inflammatory effects on Alport mice likely through the activation of multiple signaling pathways including PI3K-Akt, Hsp72, JNK1/2, and p38 pathways, providing a novel candidate therapeutic strategy to decelerate the progression of patho-phenotypes in Alport syndrome.  相似文献   

12.
Induction of heat shock proteins (HSPs) protects cells from oxidative injury. Here Hsp72, Hsp27 and heme oxygenase-1 (HO-1) were induced in cultured rat astrocytes, and protection against oxidative stress was investigated. Astrocytes were treated with sodium arsenite (20-50 micro m) for 1 h, which was non-toxic to cells, 24 h later they were exposed to 400 micro m H2O2 for 1 h, and cell death was evaluated at different time points. Arsenite triggered strong induction of HSPs, which was prevented by 1 micro g/mL cycloheximide (CXH). H2O2 caused cell loss and increased cell death with features of apoptosis, i.e. TdT-mediated dUTP nick-end labelling (TUNEL) reaction and caspase-3 activation. These features were abrogated by pre-treatment with arsenite, which prevented cell loss and significantly reduced the number of dead cells. The protective effect of arsenite was not detected in the presence of CHX. Pre-treatment with arsenite increased protein kinase B (Akt) and extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation after H2O2. However, while Akt phosphorylation was prevented by CHX, Erk1/2 phosphorylation was further enhanced by CHX. The results show that transient arsenite pre-treatment induces Hsp72, HO-1 and, to a lesser extent, Hsp27; it reduces H2O2-induced astrocyte death; and it causes selective activation of Akt following H2O2. It is suggested that HSP expression at the time of H2O2 exposure protects astrocytes from oxidative injury and apoptotic cell death by means of pro-survival Akt.  相似文献   

13.
A number of heat shock proteins (HSPs), including Hsp70 and Hsp110, function as molecular chaperones within intestinal epithelial cells that line the mammalian digestive system. HSPs confer cellular protection against environmental stress induced by chemical toxins or pathogens. There is interest in how members of this protein family might influence the progression of inflammatory bowel disease. Using the zebrafish model system, we report the expression of the duplicated hspa4 genes within the intestinal epithelium. The hspa4 genes belong to the Hsp110 family. We show that under inflammatory stress conditions within the gut, expression of these genes is up-regulated in a similar manner to that previously observed for mammalian Hsp70. Because of the amenability of the zebrafish to whole-animal screening protocols, the hspa4 genes could be used as effective read-outs for genetic, chemical and environmental factors that might influence intestinal inflammation.  相似文献   

14.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

15.
Heat shock response and ageing: mechanisms and applications   总被引:16,自引:0,他引:16  
Ageing is associated with a decrease in the ability of cells to cope with environmental challenges. This is due partly to the attenuation of a primordial stress response, the so-called heat shock (HS) response, which induces the expression of heat shock proteins (HSPs), composed of chaperones and proteases. The attenuation of the HS response during ageing may be responsible for the accumulation of damaged proteins as well as abnormal regulation of cell death. Maintenance of the HS response by repeated mild heat stress causes anti-ageing hormetic effects on cells and organisms. Here, we describe the molecular mechanism and the state of the HS response as well as the role of specific HSPs during ageing, and discuss the possibility of hormetic modulation of ageing and longevity by repeated mild stress.  相似文献   

16.
Heat stress elicits the expression of heat shock proteins (HSPs) in honey bee subspecies. These highly conserved proteins have significant role in protecting cells from thermal-induced stresses. Honey bees in subtropical regions face extremely dry and hot environment. The expression of HSPs in the nurses and foragers of indigenous (Apis mellifera jemenitica) and imported European (Apis mellifera ligustica and Apis mellifera carnica) honey bee subspecies after heat shock treatment were compared using SDS-PAGE. Hsp70 and Hsp82 were equally expressed in the nurses of all tested bee subspecies when exposed to 40 °C and 45 °C for 4 h. The forager bees exhibited differential expression of HSPs after heat stress. No HSPs was expressed in the foragers of A. m. jemenitica, and Hsp70 was expressed only in the foragers of A. m. ligustica and A. m. carnica at 40 °C. A prominent diversity in HSPs expression was also exhibited in the foragers at 45 °C with one HSP (Hsp70) in A. m. jemenitica, two HSPs (Hsp40 and Hsp70) in A. m. carnica, and three HSPs (Hsp40, Hsp60 and Hsp70) in A. m. ligustica. No HSPs was expressed in the control nurse and forager bees at any of the tested temperatures. These findings illustrated the differences in HSP expression among nurse and forager bees. It is obvious that the native foragers are more heat tolerant with least HSPs expression than exotic bee races. Further investigations will help to understand the potential role of HSPs in the adaptability, survival, and performance of bee subspecies in harsh climate of the subtropical regions.  相似文献   

17.
Using a human neuroblastoma cell line GOTO, the effects of delta 12-prostaglandin (PG) J2 on the modulation of cell cycle progression and protein synthesis were examined in comparison with those caused by heat shock (HS). delta 12-PGJ2 induced G1 arrest, the peak of which was obtained at 24 h and continued for 72 h. HS was found to induce G1 arrest earlier than delta 12-PGJ2. Furthermore, sequential HS could maintain G1 arrest. delta 12-PGJ2 induced the synthesis of several heat shock proteins (HSPs) in a manner similar to HS. Using immunoblot analysis, HSP72 was detected prior to inducing G1 arrest and accumulated during the subsequent 72h. The content of HSP72 induced by HS also correlated well with the induction, release, and maintenance of G1 arrest. In addition, both delta 12-PGJ2 and HS induced HSP72 mRNA and simultaneously suppressed N-myc mRNA expression. These results suggest that delta 12-PGJ2 and HS regulate cell cycle progression of GOTO cells via similar mechanisms.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号