首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cauliflower mitochondria do not have a 2,4-dinitrophenol-stimulated ATPase unless they are permitted a brief period of respiration (respiratory priming) or are preincubated for an extensive period with ATP (self-priming). Both priming processes are dependent on Mg2+, and are collapsed by 2,4-dinitrophenol in the absence of ATP. Corn mitochondria, which have an endogenous DNP-ATPase, contain significantly more Mg2+ and adenine nucleotides than cauliflower mitochondria. Primed cauliflower mitochondria have Mg2+ content comparable to corn mitochondria. Cauliflower mitochondria will actively accumulate adenine nucleotides through atractyloside-insensitive sites. It appears that priming consists of creating an electrochemical potential which is needed for accumulation of Mg2+ or adenine nucleotides or for charge compensation of the ATP4?ADP3-? exchange.  相似文献   

2.
The 2,4-dinitrophenol-stimulated ATPase activity and the 32P-ATP exchange reaction has been studied in rat liver mitochondria having less than 15 nmoles of K+ per milligram of protein. With 200 mm sucrose in the incubation media, the permeation of K+ and an oxidizable substrate is required for maximal stimulation of ATPase activity by 2,4-dinitrophenol. In these conditions, the 2,4-dinitrophenol-stimulated ATPase is inhibited by antimycin, acetate and mersalyl and depends to a certain extent on the rate of electron transport. The 32P-ATP exchange reaction of mitochondria with a low content of K+ also requires K+ permeation and is inhibited by antimycin, cyanide, 2,4-dinitrophenol, and acetate. The results suggest that the entrance of ATP into the mitochondria is compulsory linked to K+ uptake in a process that depends on a negative internal potential.  相似文献   

3.
The exchange of adenine nucleotides in cauliflower mitochondria was studied. Although these mitochondria translocate ADP and ATP at high rates and possess high affinity binding for the nucleotides, they differ from mammalian mitochondria with respect to the action of atractyloside. It was observed that (i) atractyloside at a concentration of 100 μm does not inhibit State 3 respiration significantly; (ii) atractyloside inhibits the 2,4-dinitrophenol-stimulated ATPase activity; (iii) atractyloside inhibits the exchange of low concentrations of ADP; on the other hand, atractyloside inhibits the exchange of ATP at all concentrations of ATP employed; (iv) ATP inhibits ADP exchange through a process that is abolished by atractyloside.  相似文献   

4.
Trypsin-induced ATPase Activity in Potato Mitochondria   总被引:4,自引:4,他引:0       下载免费PDF全文
Potato mitochondria (Solanum tuberosum var. Russet Burbank), which readily phosphorylate ADP in oxidative phosphorylation, show low levels of ATPase activity which is stimulated neither by Mg2+, 2,4-dinitrophenol, incubation with respiratory substrates, nor disruption by sonication or treatment with Triton X-100, individually or in concert. Treatment of disrupted potato mitochondria with trypsin stimulates Mg2+-dependent, oligomycin-sensitive ATPase activity 10- to 15-fold, suggesting the presence of an ATPase inhibitor protein. Trypsin-induced ATPase activity was unaffected by uncoupler. Oligomycin-sensitive ATPase activity decreases as exposure to trypsin is increased. Incubation at alkaline pH or heating at 60 C for 2 minutes also activates ATPase of sonicated potato mitochondria. Disruption of cauliflower (Brassica oleracea), red sweet potato (Ipomoea batatas), and carrot (Daucus carota) mitochondria increases ATPase activity, which is further enhanced by treatment with trypsin. The significance of the tight association of the inhibitor protein and ATPase in potato mitochondria is not clear.  相似文献   

5.
Ronald S. Kaplan  P.S. Coleman 《BBA》1978,501(2):269-274
1. The use of 1,N6-ethenoadenosine 5′-triphosphate (?-ATP), a synthetic, fluorescent analog of ATP, by whole rat liver mitochondria and by submitochondrial particles produced via sonication has been studied.2. Direct [3H]adenine nucleotide uptake studies with isolated mitochondria, indicate the ?-[3H]ATP is not transported through the inner membrane by the adenine nucleotide carrier and is therefore not utilized by the 2,4-dinitrophenol-sensitive F1-ATPase (EC 3.6.1.3) that functions in oxidative phosphorylation. However, ?-ATP is hydrolyzed by a Mg2+-dependent, 2,4-dinitrophenol-insensitive ATPase that is characteristic of damaged mitochondria.3. ?-ATP can be utilized quite well by the exposed F1-ATPase of sonic submitochondrial particles. This ?-ATP hydrolysis activity is inhibited by oligomycin and stimulated by 2,4-dinitrophenol. The particle F1-ATPase displays similar Km values for both ATP and ?-ATP; however, the V with ATP is approximately six times greater than with ?-ATP.4. Since ?-ATP is a capable substrate for the submitochondrial particle F1-ATPase, it is proposed that the fluorescent properties of this ATP analog might be employed to study the submitochondrial particle F1-ATPase complex, and its response to various modifiers of oxidative phosphorylation.  相似文献   

6.
Lin W  Hanson JB 《Plant physiology》1974,54(3):250-256
The correlations between ATP concentration in corn (Zea mays) root tissue and the rate of phosphate absorption by the tissue have been examined. Experimental variation was secured with 2,4-dinitrophenol, oligomycin, mersalyl, l-ethionine, 2-deoxyglucose, N2 gassing and inhibition of protein synthesis. It is concluded that ATP could be the energy source for potassium phosphate absorption, but only if the transport mechanism possesses certain properties: oligomycin-sensitivity; creation of a proton gradient susceptible to collapse by uncouplers; phosphate transport via a mersalyl-sensitive Pi-OH transporter; good activity at energy charge as low as 0.4; short enzymatic half-life for the ATPase or phosphate transporter; a linked mechanism for K+-H+ exchange transport, possibly electrogenic.  相似文献   

7.
The in vitro biological activity of secalonic acid D, a mycotoxin from Aspergillus ochraceus, was studied to assess its cytotoxicity for isolated rat liver mitochondria. Secalonic acid D uncoupled the oxidative phosphorylation of mitochondria and caused a mild inhibition of state 3 respiration. Secalonic acid D weakly enhanced latent ATPase activity in mitochondria but suppressed 2,4-dinitrophenol-stimulated ATPase activity. Secalonic acid D did not induce pseudoenergized swelling of mitochondria and markedly inhibited the Ca2+-induced swelling of mitochondria in KCl isotonic solution.  相似文献   

8.
Calcium ions are accumulated by intact mitochondria isolated from Ehrlich ascites tumour cells in a buffered system supplemented with ATP or succinate. In the ATP-supplemented system, the tumour mitochondria, in contrast to rat liver mitochondria, retain the accumulated Ca2+, do not exhibit a marked “irreversible” ATPase and do not swell. In the succinate-supplemented system, added Ca2+ stimulates respiration in either the absence or presence of added inorganic phosphate. Whereas respiration by rat liver mitochondria, measured in the presence of added phosphate, remains continuously activated after the addition of only a small amount of Ca2+, that by the tumour mitochondria can be stimulated by several successive additions of 100 μM Ca2+ and at all times exhibit appreciable activation ratios.  相似文献   

9.
The effect of various agents on the activation of succinate dehydrogenase in cauliflower (Brassica oleracea) and mung bean (Phaseolus aureus) mitochondria and in sonicated particles has been investigated. Reduced coenzyme Q10, inosine diphosphate, inosine triphosphate, acid pH, and anions activate the enzyme in mitochondria from higher plants in the same manner as in mammalian preparations. Significant differences have been detected in the behavior of plant and animal preparations in the effects of ATP, ADP, NADH, NAD-linked substrates, and of 2, 4-dinitrophenol on the state of activation of the dehydrogenase. In mammalian mitochondria ATP activates, whereas ADP does not, and the ATP effect is shown only in intact mitochondria. In mung bean and cauliflower mitochondria, both ATP and ADP activate and the effect is also shown in sonicated and frozen-thawed preparations. In sonicated mung bean mitochondria NADH causes complete activation, as in mammalian submitochondrial particles, but in sonicated cauliflower mitochondria activation by NADH is incomplete, as is also true of intact, anaerobic cauliflower mitochondria. Moreover, neither NAD-linked substrates nor a combination of these with NADH can fully activate the enzyme in cauliflower mitochondria. In contrast to mammalian mitochondria, succinate dehydrogenase is not deactivated in cauliflower or mung beam mitochondria under the oxidized conditions brought about by uncoupling of oxidative phosphorylation by 2,4-dinitrophenol.  相似文献   

10.
Ca 2+ transport activity in mitochondria from some plant tissues   总被引:8,自引:0,他引:8  
Mitochondria isolated from some 14 different higher plants and fungi were examined for their capacity to carry out respiration-dependent accumulation of Ca2+. Additions of Ca2+ give little or no stimulation of state 4 respiration of plant mitochondria, although the added Ca2+ was largely accumulated. Accumulation of Ca2+ required phosphate and, in most cases, was stimulated by Mg2+ and ADP or ATP. Ca2+ uptake was abolished by respiratory inhibitors and uncoupling agents. The ratio of Ca2+ ions taken up per pair of electrons per energy-conserving site was normal at about 2.0 for mitochondria from sweet potato and white potato; mitochondria from other plants showed somewhat lower ratios. Accumulated Ca2+ was only very slowly released from previously loaded plant mitochondria. Respiration-inhibited sweet potato mitochondria show both high-affinity and low-affinity Ca2+ binding sites sensitive to uncouplers, La3+, and ruthenium red and thus resemble animal mitochondria. Most other plant mitochondria lack high affinity sites. In general, mitochondria from sweet potato and white potato tubers resemble those from animal tissues, but mitochondria from carrots, beets, turnips, onions, cabbage, artichokes, cauliflower, avocados, mung bean and corn seedlings, and mushrooms show rather low affinity and activity in accumulation of Ca2+, probably due to lack of a specific Ca2+ carrier.  相似文献   

11.
ATPase and creatine phosphokinase (CPK) activities of isolated cardiac myofibrils were determined with 32P γ-labeled ATP alone and with the addition of phosphorylcreatine (PC). With ATP and PC as substrates the label in the inorganic phosphate formed is greatly diluted indicating that the ATP formed by PC through CPK can reach the ATPase active site more readily than labeled ATP from the medium. The tight coupling of the ATPase and CPK activities further strengthens our view that PC serves an important role as high energy carrier between the energy producing sites (mitochondria) and the energy utilizing sites (myofibrils).  相似文献   

12.
Recovery of high-energy compounds by ischemic myocardium is believed to be important for its return to normal functioning. While it has been previously shown that oxidative phosphorylation is markedly reduced in mitochondria isolated from ischemic myocardium in the presence of all substrates, alterations in ATPase activity have not been confirmed. This study demonstrates that, although the rate of ATP hydrolysis produced by mitochondria isolated from 2-hr ischemic myocardium does not significantly differ from that produced by non-ischemic mitochondria, the rate produced by 2-hr ischemic, 2 hr reperfused mitochondria is significantly higher. Also, Ca++ content was observed to be higher in reperfused than in non-reperfused ischemic mitocheondria. The addition of EDTA, EGTA, or oligomycin to the reperfused ischemic mitochondria resulted in the inhibition of ATPase activity. These results indicate that mitochondrial ATPase in ischemic myocardium is activated by Ca++ ions and that ischemic reperfused myocardium may contain mitochondria with uncontrolled ATPase activity such that high energy phosphate supplies are excessively depleted when the cells are reperfused.  相似文献   

13.
Kimber A  Sze H 《Plant physiology》1984,74(4):804-809
The effects of purified Helminthosporium maydis T (HmT) toxin on active Ca2+ transport into isolated mitochondria and microsomal vesicles were compared for a susceptible (T) and a resistant (N) strain of corn (Zea mays). ATP, malate, NADH, or succinate could drive 45Ca2+ transport into mitochondria of corn roots. Ca2+ uptake was dependent on the proton electrochemical gradient generated by the redox substrates or the reversible ATP synthetase, as oligomycin inhibited ATP-driven Ca2+ uptake while KCN inhibited transport driven by the redox substrates. Purified native HmT toxin completely inhibited Ca2+ transport into T mitochondria at 5 to 10 nanograms per milliliter while transport into N mitochondria was decreased slightly by 100 nanograms per milliliter toxin. Malate-driven Ca2+ transport in T mitochondria was frequently more inhibited by 5 nanograms per milliliter toxin than succinate or ATP-driven Ca2+ uptake. However, ATP-dependent Ca2+ uptake into microsomal vesicles from either N or T corn was not inhibited by 100 nanograms per milliliter toxin. Similarly, toxin had no effect on proton gradient formation ([14C]methylamine accumulation) in microsomal vesicles. These results show that mitochondrial and not microsomal membrane is a primary site of HmT toxin action. HmT toxin may inhibit formation of or dissipate the electrochemical proton gradient generated by substrate-driven electron transport or the mitochondrial ATPase, after interacting with a component(s) of the mitochondrial membrane in susceptible corn.  相似文献   

14.
Respiratory control ratios between 2.0 and 9.0 were obtained by comparison of the respiratory rates of cabbage mitochondria in the presence and in the absence of individual components of the system used to provide ADP and by comparing the rates before and after exhaustion of added ADP. These results indicate that respiration in cabbage mitochondria is controlled by the availability of ADP, which serves as the phosphate acceptor.Pentachlorophenol (PCP), 2,4-dinitrophenol (DNP), gramicidin and oleic acid inhibited phosphorylation to a greater extent than respiration in the cabbage mitochondria, but these reagents did not stimulate respiration in the absence of a phosphate acceptor. Respiration was stimulated by DNP only in the presence of added ATP.2,4-Dinitrophenol, pentachlorophenol, dicumarol and gramicidin did not stimulate ATPase activity either in the presence or absence of added Mg(2+). Oleic acid stimulated ATPase activity in the presence of added Mg(2+), but did not stimulate respiration even in the presence of added ATP.The ATP-(32)Pi exchange rate was increased many fold in the presence of added Mg(2+). Oleic acid and 2,4-dinitrophenol inhibited the exchange almost completely.  相似文献   

15.
The in vitro biological activity of secalonic acid D, a mycotoxin from Aspergillus ochraceus, was studied to assess its cytotoxicity for isolated rat liver mitochondria. Secalonic acid D uncoupled the oxidative phosphorylation of mitochondria and caused a mild inhibition of state 3 respiration. Secalonic acid D weakly enhanced latent ATPase activity in mitochondria but suppressed 2,4-dinitrophenol-stimulated ATPase activity. Secalonic acid D did not induce pseudoenergized swelling of mitochondria and markedly inhibited the Ca2+-induced swelling of mitochondria in KCl isotonic solution.  相似文献   

16.
Summary Rabbit bone marrow mitochondria isolated by differential centrifugation showed typical oxypolarographic tracings with glutamate oxidation with ADP:O ratio of 2.9. Similar results were obtained with liver mitochondria of the same animal. When marrow mitochondria were oxydizing a substrate such as glutamate, added MgCl2 markedly stimulated state-4 respiration giving a respiratory rate identical to that of state-3. In contrast, no Mg2+-stimulation was observed with liver mitochondria. Oligomycin completely blocked the stimulation by Mg2+ but further addition of 2,4-dinitrophenol reactivated the oxygen consumption by uncoupling. Further purification of marrow mitochondria by density gradient centrifugation in Percoll provided identical oxypolarographic results. Moreover, when marrow mitochondria were incubated without Mg2+, they showed a low ATPase activity that was stimulated by 2,4-dinitrophenol and blocked by oligomycin. The presence of Mg2+ in the incubation medium uncovered an additional ATPase activity which was resistant to oligomycin and apparently unaffected by 2,4-dinitrophenol. It is concluded that bone marrow mitochondria possess two types of ATPase activity distinguished on the basis of their reactivity with oligomycin, 2,4-dinitrophenol and Mg2+.Abbreviations EDTA ethylenediamine tetraacetate - DNP 2,4-dinitrophenol - BSA bovine serum albumin - BMM bone marrow mitochondria - LM liver mitochondria - Oligo. oligomycin - Anti A antimycin A Howard Hughes Investigator.  相似文献   

17.
The effects of spegazzinine, a dihydroindole alkaloid, on mitochondrial oxidative phosphorylation were studied.Spegazzinine inhibited coupled respiration and phosphorylation in rat liver mitochondria. The I50 was 120 μM. Uncouplers released the inhibition of coupled respiration. Arsenate-stimulated mitochondrial respiration was partially inhibited by spegazzinine. The stimulation of mitochondrial respiration by Ca2+ and the proton ejection associated with the ATP-dependent Ca2+ uptake were not affected by the alkaloid.Oxidative phosphorylation and the Pi-ATP exchange reaction of phosphorylating beef heart submitochondrial particles were strongly inhibited by spegazzinine (I50, 50 μM) while the ATP-dependent reactions, reduction of NAD+ by succinate and the pyridine nucleotides transhydrogenase were less sensitive (I50, 125 μM). Oxygen uptake by submitochondrial particles was not affected.The 2,4-dinitrophenol-stimulated ATPase activity of rat liver mitochondria was not affected by 300 μM spegazzinine, a concentration of alkaloid that completely inhibited phosphorylation. However, higher concentrations of spegazzinine did partially inhibit it. The ATPase activities of submitochondrial particles, insoluble and soluble ATPases were also partially inhibited by high concentrations of spegazzinine.The inhibitory properties of spegazzinine on energy transfer reactions are compared with those of oligomycin, aurovertin and dicyclohexylcarbodiimide. It is concluded that spegazzinine effects are very similar to the effects of aurovertin and that its site of action may be the same or near the site of aurovertin.  相似文献   

18.
Summary Isolated mitochondria from skeletal muscles of human and animals with neuromuscular diseases may reveal a loosely coupled state of oxidative phosphorylation, which is characterized by a normal phosphorylation in the presence of a phosphate acceptor and a maximal respiration in the absence of a phosphate acceptor. Moreover in these cases activity of mitochondrial Mg2+-stimulated ATPase is strongly increased and cannot be stimulated by the uncoupler 2,4-dinitrophenol. In this communication a histochemical technique for the demonstration of activity of mitochondrial Mg2+-stimulated ATPase to characterize the coupling state of muscle mitochondria in tissue sections, is described. This tissue-saving technique is especially suitable for the study of human skeletal muscle diseases.This paper is dedicated to Prof. Dr. med. W. Graumann in honour of his 65th birthday.  相似文献   

19.
Plasma membrane-associated ATPase obtained from cauliflower (Brassica oleraceae L.) florets isolated and assayed by several different procedures was stimulated 150 to 400% by K+. In contrast, winter wheat (Triticum aestivum L. cv. Kharkov 22 MC) shoot and root ATPase obtained by the same methods exhibited only 10 to 25% stimulation by K+. The level of K+-stimulation of the wheat enzyme was not significantly increased by purifying the crude microsomal membrane fraction using sucrose density gradients. ATPase associated with density gradient-purified cauliflower membranes was inhibited by Ca2+, high ATP concentration in the presence of low Mg2+, and by several metabolic inhibitors. In contrast, the wheat enzyme was largely unaffected by all of these treatments. The plasma membranes of intact wheat and cauliflower cells gave a positive reaction with the plasma membrane-specific, phosphotungstic acid-chromic acid stain (PACP). A high proportion of the cauliflower membrane vesicles in the putative plasma membrane-enriched fraction stained with PACP, whereas only a small proportion of the wheat membrane vesicles reacted positively with PACP. These results indicate that a plasma membrane-enriched fraction has been isolated successfully from cauliflower floret tissue, but that none of the procedures used effectively separate plasma membranes from homogenates of wheat shoots and roots.  相似文献   

20.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号