首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Immortalized human T cell lines were established by cotransfecting c-Ha-ras and c-myc oncogenes to lymph node lymphocytes. The cell lines kept growing for 3 months after establishment without a decrease in growth rate. The cells did not require interleukin-2(IL-2) for their growth, but addition of IL-2 stimulated the growth of these cells. Flow cytometric analysis revealed that these cells were T cells expressing CD4 or CD8 antigens. A CD4 positive (CD4+) cell line produced IL-6, indicating that the cell line belongs to helper T cells. The CD8 positive (CD8+) cell line possessed cytotoxicity to tumor cells, indicating that the cell line were killer T cells. Both cell lines were able to proliferate in serum-free medium indefinitely.  相似文献   

2.
3.
We have generated lines of BeWo cells that constitutively and stably express either histone H2B tagged with the green fluorescent protein (GFP), or the mitochondrial targeting sequence of subunit VIII of cytochrome c oxidase fused with a red fluorescent protein; one line has nuclei that fluoresce green, the other mitochondria that fluoresce red. Expression of these tagged proteins has no effect on the rates of DNA, RNA and protein synthesis, or on the amounts of human chorionic gonadotropin (hCG) secreted after treatment with forskolin. We used fluorescence-activated cell sorting (FACS) to monitor the extent of cell fusion (syncytialisation) between these two lines; fused cells are readily and accurately detected by their green/red fluorescence. This assay should prove useful in the investigation of the molecular mechanisms involved in trophoblast syncytialisation.  相似文献   

4.
Human and mouse cell lines that expressed a CD4/Thy-1 fusion protein on the cell surface were constructed and tested for the capacity to be infected with human immunodeficiency virus. The human cell lines, in contrast to the mouse line, were infectable. The CD4/Thy-1 fusion, which is anchored to the membrane by a glycosylphosphatidylinositol tail rather than a peptide linkage, can therefore serve as a human immunodeficiency virus receptor. In addition, this molecule, like CD4, is down-modulated in its cell surface expression by exogenous gangliosides.  相似文献   

5.
A hypoxanthine-aminopterin-thymidine (HAT) sensitive human fusion partner cell line, HK-128 was established from a human plasmacytoma line, LICR-LON-HMy2 (HMy2). The HK-128 cells showed a 100% cloning efficiency. Fusion efficiency of HK-128 was so high that one hybridoma cell was produced by fusion of 105 cells of HK-128 with lymphocytes, obtained from lymph nodes of breast cancer patients. About 90% of the resulted hybridomas were IgG producers. The remainder revealed IgM producing activity, which was lost by long term culture. This result indicates that the HK-128 cell line has an advantage for making hybridoma cells producing IgG. Among ca. 7,000 hybridomas obtained by fusion of HK-128 with lymphocytes of a breast cancer patient, we could establish a hybridoma cell line which produced IgG specifically reacting to a human breast cancer cell line, MCF-7.  相似文献   

6.
7.
Two human lymphoblastic cell lines, deficient in methylthioadenosine phosphorylase (MTAP) activity, were found to have increased rates of de novo purine synthesis. These MTAP cell lines were K562, an undifferentiated leukemic line and CCRF-CEM, a leukemic line of T-cell origin. Another T-cell line, CCRF-HSB-2 was found to be deficient in activity. However, this line did not demonstrate elevated rates of purine synthesis. Purine metabolism in the above cell cultures was compared with MTAP+ human B-cell lines and two human T-cell lines (MOLT-3 and MOLT-4). In all the MTAP+ cell lines, the rate of de novo purine synthesis was inhibited by the presence of methylthioadenosine in the assay medium (10 μM concentration produced more than 90% inhibition). However, purine synthesis in the MTAP cells was resistant to inhibition by methylthioadenosine. Adenine in the assay medium inhibited de novo purine synthesis in MTAP+ and MTAP cells to a similar degree. This inhibition was dose dependent and was elicited by concentrations similar to those of methylthioadenosine. Growth of the cell lines in culture was not affected by either methylthioadenosine or adenine at the concentrations which produced inhibition of purine synthesis. These results suggest that purine synthesis in MTAP+ cells is inhibited by adenine formed from the phosphorolytic cleavage of methylthioadenosine by methylthioadenosine phosphorylase.  相似文献   

8.
Heterokaryons were prepared and analyzed shortly after cell fusion using two mutant class-II-negative human B cell lines (RJ 2.2.5 and 6.1.6) and a cell line (TF) from a patient with a class-II-negative Bare Lymphocyte Syndrome. The resulting transient heterokaryons were analyzed by using an anti-HLA-DR monoclonal antibody to assess the cell surface expression of HLA-DR (the major subtype of class II antigens) by immunofluorescence microscopy and by using uniformly 32P-labeled SP6 RNA probes in Northern blots and RNase protection assays to assess mRNA synthesis. We find that class II gene expression in a B cell line from a Bare Lymphocyte Syndrome patient (TF) is rescued by a B cell line which expresses class II antigens indicating that this disease, at least in part, is caused by a defect(s) in a genetic locus encoding a factor(s) necessary for class II gene expression. Secondly, reciprocal genetic complementation was demonstrated in the heterokaryons 6.1.6 x RJ 2.2.5 and TF x RJ 2.2.5 (but not in TF x 6.1.6) by detection of cell surface DR by immunofluorescence microscopy and by a novel class II mRNA typing technique which allows characterization of distinct class II alleles. Thus, the two mutants generated in vitro have defects at two different genetic loci encoding specific regulatory factors necessary for human class II gene expression. One of these mutant cell lines, but not the other, complements the defect in the patient cell line, TF.  相似文献   

9.
We have succeeded in establishing a method to reproducibly immortalize human T cells by oncogene(s) transfection (Alam, 1997). This study was based on our previous discoveries that these immortalized T cell lines contained T cells which showed cytotoxicity against K562 cells in MHC-nonrestricted manner. Then we attempted to obtain human T cell clones exhibiting natural killer-like activity. Here, we tried to establish clones from these immortalized T cell lines by limiting dilution after stimulation with K562 cells, and then obtained 16 T cell clones. Two clones among them maintained their stability and showed vigorous growth phenotype. Thus we selected these two clones for further analysis. One is derived from the T cell line transfected with oncogenes ras and fos, the other is from the T cell line transfected with myc and fos. Both clones were demonstrated to be CD4+ T cells, indicating that CD4+ T cells were preferably expanded from T cell lines immortalized by oncogene transfection. These two clones showed cytotoxicity against K562 cells, indicating that these two T cell clones still retain a natural killer-like activity of killing target cells of K562 cells in a MHC-nonrestricted manner. The natural killer-like activity of the T cell clones was shown to be stable for more than 2 yr when cultured in the presence of IL-2, indicating that introduction of two oncogenes such as ras/fos or myc/fos resulted in the acquisition of infinite replicative life-span but not in transformational alteration of cellular function. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Two lung and two colon carcinoma cell lines of human origin, which contained the same activated rasK transforming gene, expressed abnormal species of p21 that were distinct from the p21 proteins expressed in normal human cells and other human carcinomas. The abnormal species of p21 expressed by three of these cell lines were indistinguishable from each other, but differed from the abnormal p21 expressed by one lung carcinoma cell line. NIH cells transformed by DNAs of these carcinomas expressed the same abnormal p21 species, indicating that these abnormal proteins were encoded by the activated rasK genes detected by transfection. These results indicate that transforming activity of rasK genes in human lung and colon carcinoma cell lines is activated by mutations which alter the structure of their gene products, and that activation of rasK genes can result from different molecular alterations in different individual neoplasms.  相似文献   

11.
Eukaryotic cells devoid of mitochondrial DNA (ρ0 cells) were originally generated under artificial growth conditions utilizing ethidium bromide. The chemical is known to intercalate preferentially with the mitochondrial double-stranded DNA thereby interfering with enzymes of the replication machinery. ρ0 cell lines are highly valuable tools to study human mitochondrial disorders because they can be utilized in cytoplasmic transfer experiments. However, mutagenic effects of ethidium bromide onto the nuclear DNA cannot be excluded. To foreclose this mutagenic character during the development of ρ0 cell lines, we developed an extremely mild, reliable and timesaving method to generate ρ0 cell lines within 3–5 days based on an enzymatic approach. Utilizing the genes for the restriction endonuclease EcoRI and the fluorescent protein EGFP that were fused to a mitochondrial targeting sequence, we developed a CMV-driven expression vector that allowed the temporal expression of the resulting fusion enzyme in eukaryotic cells. Applied on the human cell line 143B.TK the active protein localized to mitochondria and induced the complete destruction of endogenous mtDNA. Mouse and rat ρ0 cell lines were also successfully created with this approach. Furthermore, the newly established 143B.TK ρ0 cell line was characterized in great detail thereby releasing interesting insights into the morphology and ultra structure of human ρ0 mitochondria.  相似文献   

12.
The factors determining successful derivation of human T lymphocyte hybrids are largely unknown. This report describes diploid and tetraploid clones of the T cell line CEM which were fused with either a human T cell line (Jurkat) or with peripheral blood lymphocytes (PBL). Fusions of all CEMR clones with the Jurkat cell line yielded hybrids at a very high frequency (1 X 10(-4)). Fusion of diploid clones of CEM with PBL yielded no hybrids, whereas fusion of tetraploid clones of CEM with PBL resulted in growth frequencies of 1 to 3 X 10(-6). Enumeration of hybrids immediately after fusion indicated that in all cases, fused cells represented 5 to 10% of the population. That the ability to yield viable hybrids after fusion was a characteristic of tetraploid cells was indicated by the finding that tetraploid variants of a diploid clone could also yield viable hybrids after fusion. Possible mechanisms for the difference in results generated with diploid and tetraploid cells, and characteristics of the hybrid cells generated, are also discussed.  相似文献   

13.
Summary Fibroblasts from a beige mouse (C57BL/6J;bg J bgJ) have been established and maintained in culture for more than 3 yr. At early passages, the mutant cells were distinguishable from C57BL/6J control mouse fibroblasts at the ultrastructural level by the presence of enlarged cytoplasmic granules. After continuous passaging, this distinguishing feature was lost from the mutant cells, correlated with their increased growth rate. Clustered, perinuclear distribution of lysosomes was retained, however, and was quantitatively different at any passage number of the beige cell line from the dispersed distribution of these organelles in control mouse fibroblasts, as analyzed by computer-aided, video-enhanced light microscopy. In somatic cell hybrids between the established beige cell line and a control human diploid fibroblast cell strain, seven uncorrected hybrid lines retained a lysosomal dispersion pattern statistically indistinguishable from that of the beige mouse cell lines. Three corrected hybrid lines had lysosomal dispersion patterns that were significantly different from the beige parent line and indistinguishable from that of the control mouse fibroblast line. Thus, lysosomal dispersion can be used objectively and quantitatively to distinguish mutant beige and control mouse fibroblasts and corrected vs. uncorrected cell hybrids made from the beige/control human somatic cell crosses.  相似文献   

14.
Long-term survivors of reconstituted human-mouse cells have been isolated and characterized by utilizing nuclear and cytoplasmic genetic markers. Karyoplasts were derived from the human SV40-transformed fetal lung fibroblast strain WI38 VA13, while cytoplasts were obtained from the mouse fibroblast A9 cell line which was both hypoxanthine-aminopterin-thymidine-sensitive (HATs; nuclear marker) and chloramphenicol-resistant (CAPr; cytoplasmic marker). The fusion products were isolated in medium containing HAT and CAP. Clones initially showed a growth pattern different from either human or mouse parental cell, but after repeated subculturing, morphologically resembled the nuclear donor cell. The human and mouse components in these cells were identified from other possible fusion combinations by karyotypic, enzymatic and mitochondrial DNA (mDNA) analyses. The karyotype, using both Q-banding and C-banding revealed only human chromosomes. Electrophoretic mobility of the enzyme malate dehydrogenase, a nuclear controlled enzyme, confirmed the human nucleus. Buoyant density centrifugation of radioactive labelled isolated mitochondrial DNA from the reconstituted cells provided evidence that the cytoplasm was of mouse origin.  相似文献   

15.
A microscale isoelectric focusing technique has been developed and used to study hypoxanthine-guanine phosphoribosyl transferase (HGPRT; E.C. 2.4.2.8, inosinate-guanylate:pyrophosphate phosphoribosyl transferase) activities in mouse and human cell lines. The enzymes of both mouse and human origin are shown to exhibit considerable heterogeneity, but each type has a unique range of isoelectric pH. The enzyme of a mouse × human hybrid cell line, derived by fusion of HGPRT parental cells, gives a homogeneous peak of activity, unlike the wild-type enzyme of either parent. The possibility is suggested that this enzyme activity is due to intra-allelic complementation.Centennial Fellow of the Medical Research Council of Canada, 1967–1970.  相似文献   

16.
Peripheral blood lymphocytes from normal human donors were cocultivated with cells from two established human multiple myeloma cell lines, RPMI 8226 and K-737, and with lymphoblastoid cells from a third B cell line, RAMM. After a comparison of three methods of lymphocyte sensitization, a 6-day incubation protocol with equal numbers of normal lymphocytes and mitomycin C-treated tumor cells was selected. Cells from the RPMI 8226 myeloma line stimulated the differentiation of lymphocytes into cytotoxic effector cells as measured by 51Cr release from labeled target cells. The RPMI 8226-sensitized lymphocytes were cytotoxic for myeloma cells (RPMI 8226 and K-737) and for lymphoblastoid cells (RAMM) but not for cells from human lung tumor lines (A549, A427, MB9812), a breast carcinoma line (ALAB), a normal diploid fibroblast line (HSBP), or normal lymphocytes.  相似文献   

17.
Normal cells in culture exhibit limited division potential and have been used as a model for cellular senescence. In contrast, tumor-derived or carcinogen- or virus-transformed cells are capable of indefinite division. Fusion of normal human diploid fibroblasts with immortal human cells yielded hybrids having limited life spans, indicating that cellular senescence was dominant. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. The purpose of this study was to determine whether human chromosome 1 could complement the recessive immortal defect of human cell lines assigned to one of the four complementation groups. Using microcell fusion, we introduced a single normal human chromosome 1 into immortal human cell lines representing the complementation groups and determined that it caused loss of proliferative potential of an osteosarcoma-derived cell line (TE85), a cytomegalovirus-transformed lung fibroblast cell line (CMV-Mj-HEL-1), and a Ki-ras(+)-transformed derivative of TE85 (143B TK-), all of which were assigned to complementation group C. This chromosome 1 caused no change in proliferative potential of cell lines representing the other complementation groups. A derivative of human chromosome 1 that had lost most of the q arm by spontaneous deletion was unable to induce senescence in any of the immortal cell lines. This finding indicates that the q arm of human chromosome 1 carries a gene or set of genes which is altered in the cell lines assigned to complementation group C and is involved in the control of cellular senescence.  相似文献   

18.
19.
The nature of lymphoid progenitors and factor(s) determining commitment to either the T- or B-lymphocyte pathway are poorly understood in the human system. In this study, we generated a monoclonal antibody (MoAb), 18.6, that recognizes a cell surface antigen on a human lymphoid progenitor cell line (FL4.4). MoAb 18.6 reacted with lymphoid progenitor lines, B lymphoid cell lines, and myelomonocytic cell lines. It did not react with any T cell or erythroid leukemic cell lines. Two color FACS analyses of normal lymphoid tissues showed that MoAb 18.6 reacted with a majority of CD20+ mature B cells and a minority of CD64+ monocytes. Molecules of 3 different sizes with MW of 34, 45, and 68 Kd were precipitated with MoAb 18.6 from the lymphoid progenitor cell line. The 18.6 antigen was not expressed on a fetal liver-derived lymphoid progenitor-like cell line, FL1.4, which has the capacity to differentiate into microglia-shaped cells upon PMA-stimulation. Stimulation of FL1.4 cells with PMA induced expression of the 18.6 antigen within 24 hr and the microglia-shaped cells stained positively with MoAb 18.6. Finally, cloning of a cDNA that encoded the 18.6 antigen revealed that the 18.6 antigen is identical to the CD23 antigen. Taken together, these data suggest that the 18.6/CD23 antigen is expressed on lymphoid precursors at a very early stage of differentiation.  相似文献   

20.
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号