共查询到20条相似文献,搜索用时 15 毫秒
1.
Lamins are members of a multigene family of structural nuclear envelope (NE) proteins. Differentiated mammalian somatic cells express lamins A, C, B1, and B2. The composition and organization of the nuclear lamina of mammalian spermatogenic cells differ significantly from that of somatic cells as they express lamin B1 as well as two short germ line-specific isoforms, namely lamins B3 and C2. Here we describe in detail the expression pattern and localization of lamin B3 during mouse spermatogenesis. By combining RT-PCR, immunoblotting, and immunofluorescence microscopy, we show that lamin B3 is selectively expressed during spermiogenesis (i.e., postmeiotic stages of spermatogenesis). In round spermatids, lamin B3 is distributed in the nuclear periphery and, notably, also in the nucleoplasm. In the course of spermiogenesis, lamin B3 becomes redistributed as it concentrates progressively to the posterior pole of spermatid nuclei. Our results show that during mammalian spermiogenesis the nuclear lamina is composed of B-type isoforms only, namely the ubiquitous lamin B1 and the germline-specific lamin B3. Lamin B3 is the first example of a mammalian lamin that is selectively expressed during postmeiotic stages of spermatogenesis. 相似文献
2.
NuMA is a well-characterized organizer of the mitotic spindle, which is believed to play a structural role in interphase nucleus. We studied the expression of NuMA in rat seminiferous epithelium in detail. Different stages of the cycle of the seminiferous epithelium were identified using transillumination. Corresponding areas were microdissected and analysed using immunofluorescence, immunohistochemistry, or immunoblotting. NuMA was expressed in Sertoli cells, proliferating type A and B spermatogonia, and early spermatids but it was absent in late spermatids and mature spermatozoa. Interestingly, NuMA-positive primary spermatocytes lost their nuclear NuMA at the beginning of long-lasting prophase of the first meiotic division. A strong expression was again observed at the end of the prophase and finally, a redistribution of NuMA into pole regions of the meiotic spindle was observed in first and second meiotic divisions. In immunoblotting, a single 250-kDa protein present in all stages of the rat seminiferous epithelial cycle was detected. Our results show that NuMA is not essential for the organization of nuclear structure in all cell types and suggest that its presence is more likely connected to the proliferation phase of the cells. They also suggest that NuMA may play an important role in meiotic cell division. 相似文献
3.
Stuart B. Moss Brenda L. Burnham Anthony R. Bellv 《Molecular reproduction and development》1993,34(2):164-174
The presence of lamin proteins in mouse spermatogenic cells has been examined by using an anti-lamin AC and an anti-lamin B antisera which recognize somatic lamins A and C, and somatic lamin B, respectively. Anti-lamin B binds to the nuclear periphery of all cell types examined, including Sertoli cells, primitive type A spermatogonia, preleptotene, leptotene, zygotene and pachytene spermatocytes, and round spermatids. In sperm nuclei, the antigenic determinants are localized to a narrow domain of the nucleus. However, after removing the perinuclear theca, anti-lamin B localizes to the entire nuclear periphery in a punctate pattern, suggesting that it is binding to determinants previously covered by the theca constituents. On immunoblots anti-lamin B reacts with a ~ 68 kD polypeptide in all germ cells and, to a lesser extent, with four additional polypeptides present only in meiotic and post-meiotic nuclear matrices. Anti-lamin AC also reacts with the perinuclear region of the somatic cells in the testes, in particular, those of the interstitium and also the Sertoli cells of the seminiferous epithelium. In contrast to anti-lamin B, anti-lamin AC does not bind to the germ cells at any stage of spermatogenesis. In addition, nuclear matrix proteins from isolated spermatogenic cells do not bind anti-lamin AC on immunoblots, suggesting the lack of reactivity is not due to the masking of any antigenic sites. These data demonstrate that germ cells contain lamin B throughout spermatogenesis, even during meiosis and spermiogenesis when the nuclear periphery lacks a distinct fibrous lamina. © 1993 Wiley-Liss, Inc. 相似文献
4.
5.
The nucleus is one of the membrane-bound organelles that are a distinguishing feature between eukaryotes and prokaryotes. During meiosis, the nuclear envelope takes on functions beyond separating the nucleoplasm from the cytoplasm. These include associations with meiotic chromosomes to mediate pairing, being a sensor for recombination progression, and supportive of enormous nuclear growth during oocyte formation. In this review, we highlight recent results that have contributed to our understanding of meiotic nuclear envelope function and dynamics. 相似文献
6.
Lamin C2 is a splice product of the mammalian lamin A gene and expressed in primary spermatocytes where it is distributed in the form of discontinuous plaques at the nuclear envelope. We have previously shown that the aminoterminal hexapetide GNAEGR of lamin C2 following the start methionine is essential for its association with the nuclear envelope and that the aminoterminal glycine of the hexapeptide is myristoylated. Here we have analyzed the ultrastructural changes induced in COS-7 and Xenopus A6 cells by overexpressing rat lamin C2 or a human lamin C mutant possessing the lamin C2-specific hexapeptide at its aminoterminus. Both lamins were targeted to the nuclear envelope of mammalian and amphibian cells and induced the formation of intranuclear membranes, whereas wild-type human lamin C and a lamin C2 mutant, that both lack this lipid moiety, did not. Our data indicate that the myristoyl group of lamin C2 has besides its demonstrated role in nuclear envelope association additional functions during spermatogenesis. Our present study complements previously published results where we have shown that the CxxM motif of lamins promotes nuclear membrane growth (Prüfert et al., 2004. J. Cell Sci. 117, 6105-6116). 相似文献
7.
8.
Nie DS Xiang Y Wang J Deng Y Tan XJ Liang YH Lu GX 《Biochemical and biophysical research communications》2005,328(4):1010-1018
A novel testis-specific gene termed mtLR1 was identified by digital differential display. Sequence analyses revealed that mtLR1 protein contains an amino terminus leucine-rich repeat domain and shows 33% similarities to PIDD which functions in p53-mediated apoptosis. Northern blot analysis showed that mtLR1 mRNA was specifically expressed in adult mouse testis, and RT-PCR results also showed that mtLR1 was exclusively expressed in adult testis and not in spermatogonial cells. The expression of mtLR1 mRNA was developmentally upregulated in the testes during sexual maturation and was, conversely, downregulated by experimental cryptorchidism in vivo. We also showed that the expression of mtLR1 mRNA was relatively highly sensitive to heat stress in vitro. The green fluorescent protein produced by pEGFP-C3/mtLR1 was only detected in the cytoplasm of spermatogonia cell line GC-1 after 24 h posttransfection. Immunohistochemical analysis revealed that the protein is most abundant in the cytoplasm of spermatocytes and round spermatids within seminiferous tubules of the adult testis. The time-dependent expression pattern of mtLR1 in postnatal mouse testes suggested that mtLR1 gene might be involved in the regulation of spermatogenesis and sperm maturation. 相似文献
9.
10.
We have identified a 110-kDa pI 5.6 phosphoprotein with DNA binding properties in the rat pachytene spermatocyte nuclear matrix. By immunoblotting and indirect immunofluorescence assays using polyclonal antibodies against the 110-kDa protein, we observed that it was germ cell nuclear matrix specific, more prominent in pachytene spermatocytes compared to premeiotic spermatogonia or postmeiotic round spermatids, and present in rat oocytes and in germ cells of mouse and monkey. We propose that this protein could play an important role in the meiotic process. 相似文献
11.
12.
The development of nuclear vacuoles during meiosis in plants 总被引:1,自引:0,他引:1
Vacuoles formed by the invagination of the inner membrane of the nuclear envelope have been observed during meiotic prophase in a wide range of plants. In the angiosperm Lycopersicon their formation was found to coincide with the completion of synaptonemal complex formation, and this timing is analogous to that observed during this stage in the silkworm Bombyx. The implications of this activity in relation to the process of chromosome movement are discussed. In the gymnosperm Pinus, the heterosporous fern Marsilea and homosporous ferns Pteridium and Dryopteris the formation of nuclear vacuoles begins much earlier, coinciding with the condensation of chromatin during leptotene. They enlarge and become more elaborate as meiosis proceeds, and may eventually become detached from the nuclear envelope. It is therefore thought unlikely that theyfulfil functions connected with chromosome movement in the manner proposed for the silkworm and the tomato. During diplotene/diakinesis they contain electron-opaque granules and fibrils, and the possible origin and significance of this material is discussed. 相似文献
13.
14.
Hiroki Inoue Yuuki Hiradate Yoshiki Shirakata Kenta Kanai Keita Kosaka Aina Gotoh Yasuhiro Fukuda Yutaka Nakai Takafumi Uchida Eimei Sato Kentaro Tanemura 《FEBS letters》2014
Tau is one of the microtubule-associated proteins and a major component of paired helical filaments, a hallmark of Alzheimer’s disease. Its expression has also been indicated in the testis. However, its function and modification in the testis have not been established. Here, we analyzed the dynamics of phosphorylation patterns during spermatogenesis. The expression of Tau protein and its phosphorylation were shown in the mouse testis. Immunohistochemistry revealed that the phosphorylation was strongly detected during meiosis. Correspondingly, the expression of acetylated tubulin was inversely weakened during meiosis. These results suggest that phosphorylation of Tau protein contributes to spermatogenesis, especially in meiosis. 相似文献
15.
16.
Role of follitropin receptor signaling in nuclear protein transitions and chromatin condensation during spermatogenesis 总被引:2,自引:0,他引:2
Xing W Krishnamurthy H Sairam MR 《Biochemical and biophysical research communications》2003,312(3):697-701
Follitropin receptor (FSHR) in testicular Sertoli cells mediates signaling by pituitary follitropin (FSH) promoting intercellular communication with germ cells for normal spermatogenesis. Using receptor knockout mice we examined changes in sperm nucleoproteins and chromatin architecture. The expressions of transition proteins 1/2 (TP1/2) and protamine-2 (PRM-2) were greatly diminished at 21 days, but returned to normal at 35 days and 3 months after birth. However, protein components in chromatin were quite different. Western blots detected a reduction in PRM1/2 and prolonged retention of mono-ubiquitinated histone 2A (uH2A) in the epididymal sperm from adult mutants. Two forms of mono- and poly-uH2A were present in sonication-resistant testicular spermatids in normal mice, whereas only an elevated mono-uH2A was detectable in mutants. Decrease in PRM1/2 and retention of mono-uH2A was coincident with reduction in TP1/2 in premature spermatids. Thus lack of FSHR signaling impairs expression of TP1/2 and PRM-2 at an early stage of post-natal development causing delayed spermatogenesis. In the adult, absence of FSHR signaling prolongs retention of mono-uH2A, leading to impair transition of basic nucleoproteins and chromatin remodeling during mouse spermatogenesis. 相似文献
17.
18.
Changes in nuclear content of protein conjugate histone H2A-ubiquitin during rooster spermatogenesis 总被引:1,自引:0,他引:1
Electrophoretic analysis of acid-soluble chromosomal proteins isolated from rooster testis cell nuclei at different stages of spermatogenesis, revealed that the nuclear content of a protein identified by its solubility, electrophoretic mobility and amino acid analysis as the protein conjugate histone H2A-ubiquitin (uH2A, A24) changed markedly from meiotic cells to late spermatids. The protein was not detectable in tetraploid primary spermatocytes; it was present in 1.7% of the total amount of nucleosomal core histones in early spermatids and reached its maximum level (3.5% and 11%) at the end of spermiogenesis, when histones are replaced by the protamine galline. 相似文献
19.
In order to isolate genes whose expression is up-regulated after the initiation of meiosis, we screened a cDNA expression
library of newt testes with antiserum against homogenates of testes derived from the spermatogonial and spermatocyte stages.
We report the isolation of spermatocyte-specific cDNA clones encoding a newt homologue of the calcium-dependent phospholipid-binding
protein, annexin V. Northern blot analysis showed that newt annexin V mRNA was 1.7 kb in length and was expressed strongly
in testes, but weakly in other organs. In situ hybridization revealed that the expression of newt annexin mRNA was barely
observed in spermatogonia, but increased significantly in leptotene-zygotene primary spermatocytes and reached a maximum level
in pachytene spermatocytes and round spermatids. The newt annexin V cDNA predicted a 323-amino acid protein and had a 68%
homology to human annexin V. The predicted amino acid sequence contained a conserved 4-fold internal repeat of approximately
70 residues like other annexin proteins. Immunoblot analysis using the monoclonal antibody against newt annexin V showed that
the protein was expressed scarcely in spermatogonia but was abundantly expressed in stages from primary spermatocytes to spermatids;
this pattern was consistent to that of the mRNA. Immunohistochemical analysis revealed that newt annexin V was localized in
the cytoplasm of the spermatogenic cells, but not in somatic cells such as Sertoli cells or pericystic cells. These results
indicate that the expression of newt annexin V is up-regulated in the spermatogenic cells after the initiation of meiosis
and suggest that newt annexin V plays an important role in spermatogenesis.
Received: 8 December 1995 / Accepted: 12 February 1996 Edited by H. Shimada/D. Tautz 相似文献