首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The populations of Gelidium canariensis (Grunow) Seoane-Camba from the Canary Islands were analyzed for genetic variability by isozyme electrophoresis in 1989 and 1990. Each population was divided into sporophytic and gametophytic subpopulations. Twenty-three to 27 putative alleles corresponding to 22 gene loci were analyzed. Sev-enteen loci were monomorphic in all six subpopulations, and five were polymorphic in at least one subpopulation. Significant deviations from Hardy-Weinberg equilibrium were found. The amount of genetic variability (percentage of polymorphic loci, mean number of alleles per locus, and average gene diversity) of haploid subpopulations was lower than that of diploid subpopulations. No correlation between genetic distance and geographical distance was found. Low genetic differentiation between sporophytic and gametophytic subpopulations of the same locality was obsewed in two populations. The low genetic diversity and genetic differentiation suggest that the genetic structure of the populations of G. canariensis from the Canary Islands is due to a combination of founder effects and the predominance of asexual reproduction. Initial differences in gene frequencies may have persisted because of insufficient time to reach a higher level of differentiation.  相似文献   

2.
Measures of diversity within populations, and distance between populations, are compared for organisms with an asexual or mixed mode of reproduction. Examples are drawn from studies of plant pathogenic fungi based on binary traits including presence/absence of DNA bands or virulence/avirulence to differential hosts. Commonly used measures of population diversity or genetic distance consider either genotype frequencies or allele frequencies. Kosman's diversity and distance measures are the most suitable for populations with an asexual or mixed mode of reproduction, because by considering genetic patterns of all individuals they take into account not just the genotype frequencies but also the genetic similarities between genotypes in the populations. The Kosman distance and diversity measures for populations can be calculated using different measures of dissimilarity between individuals (the simple mismatch, Jaccard and Dice coefficients of dissimilarity). Kosman's distances based on the simple mismatch and Jaccard dissimilarities are metrics. Comparisons of diversity indices for hypothetical examples as well as for actual data sets are presented to demonstrate that inferences from diversity analysis of populations can be driven by techniques of diversity and distance assessments and not only data driven.  相似文献   

3.
Random amplified polymorphic DNA (RAPD) marker variation was analyzed in female gametophytes in natural populations of Gelidium canariense (Grunow) Seoane‐Camba ex Haroun, Gil‐Rodríguez, Diaz de Castro et Prud'Homme van Reine from the Canary Islands to estimate the degree and distribution of genetic variability and differentiation. A total of 190 haploid individuals were analyzed with 60 polymorphic RAPDs bands which produced 190 distinct multilocus genotypes. A high level of polymorphism was detected in all populations analyzed. Within‐population gene diversity ranged from 0.156 to 0.264. The populations on the island of Gran Canaria showed higher genetic variation than the other populations analyzed. The partitioning of molecular variance by analysis of molecular variance showed that most genetic variation resides within populations (68.85%). These results suggest that sexual reproduction is the predominant mode of reproduction for G. canariense gametophytic populations, and the main determinant in reaching high levels of genetic diversity. The Neighbor‐Joining tree and FCA analysis displayed two subclusters that correspond to the populations from the western islands (Tenerife, La Palma, Gomera) and the eastern island (Gran Canaria). In addition, we have detected a significant relationship between FST/(1?FST) and geographical distance consistent with data on water circulation and age of islands. The results obtained agree with an isolation by distance model, with gene flow from eastern to the western islands, and a high level of genetic differentiation between populations (FST=0.311, P<0.001).  相似文献   

4.
Electrophoretic analysis of 18 allozyme loci was used to estimate the levels and structuring of genetic variation within and among natural populations of the protected endemic palm species from the Canary Islands (Phoenix canariensis) to evaluate its genetic relationship with the widespread congener P. dactylifera, and to assess comparatively the genetic variation in the populations where the two species coexist with morphologically intermediate plants (mixed populations). Our survey revealed that the within-population component explains roughly 75% of the genetic variation levels detected in P. canariensis (A=1.59; P=41.8; He=0.158), which rank higher than those reported for other species of the Arecaceae. A Principal Component analysis (PCA) based on allele frequencies consistently separates populations of P. canariensis and P. dactylifera, and reveals a close genetic relationship between P. canariensis and the mixed populations. Reduced levels of genetic variation in P. canariensis with respect to P. dactylifera, the fact that the genetic makeup of the Canarian endemic (with no unique alleles) is a subset of that found in P. dactylifera, and the high genetic identity between both species strongly suggest that P. canariensis is recently derived from a common ancestor closely related to P. dactylifera.  相似文献   

5.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

6.
Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.  相似文献   

7.
Baker's Law predicts uniparental reproduction will facilitate colonization success in novel habitats. While evidence supports this prediction among colonizing plants and animals, few studies have investigated shifts in reproductive mode in haplo‐diplontic species in which both prolonged haploid and diploid stages separate meiosis and fertilization in time and space. Due to this separation, asexual reproduction can yield the dominance of one of the ploidy stages in colonizing populations. We tested for shifts in ploidy and reproductive mode across native and introduced populations of the red seaweed Gracilaria vermiculophylla. Native populations in the northwest Pacific Ocean were nearly always attached by holdfasts to hard substrata and, as is characteristic of the genus, haploid–diploid ratios were slightly diploid‐biased. In contrast, along North American and European coastlines, introduced populations nearly always floated atop soft‐sediment mudflats and were overwhelmingly dominated by diploid thalli without holdfasts. Introduced populations exhibited population genetic signals consistent with extensive vegetative fragmentation, while native populations did not. Thus, the ecological shift from attached to unattached thalli, ostensibly necessitated by the invasion of soft‐sediment habitats, correlated with shifts from sexual to asexual reproduction and slight to strong diploid bias. We extend Baker's Law by predicting other colonizing haplo‐diplontic species will show similar increases in asexuality that correlate with the dominance of one ploidy stage. Labile mating systems likely facilitate colonization success and subsequent range expansion, but for haplo‐diplontic species, the long‐term eco‐evolutionary impacts will depend on which ploidy stage is lost and the degree to which asexual reproduction is canalized.  相似文献   

8.
Microsatellite variation was determined for three Danish and three Dutch populations of the haploid moss species Polytrichum formosum to gain insight into the relative importance of sexual vs. asexual reproduction for the amount and structure of genetic variation. In general, low levels of microsatellite variation were observed within this species. Even when estimated for polymorphic loci only, the levels of microsatellite variability (P=90.6, A=4.3 and HS=0.468) within populations were on average lower than those reported for most other plant species. In contrast, genotypic diversity was high within each of the examined populations, indicating that sexual reproduction is a very important determinant of the genetic structure of P. formosum within populations. In agreement with previous findings for allozyme data, no significant genetic differentiation (FST=0.028, RST=0.015) was observed neither between populations nor between regions approximately 450 km apart (Denmark vs. the Netherlands). These low levels of population differentiation observed for both types of genetic markers are probably best explained by a high level of effective spore dispersal (gene flow) between populations. Therefore, also on a large geographical scale sexual reproduction is the most important determinant of the genetic structure of P. formosum, despite the high potential to reproduce clonally.  相似文献   

9.
Oryza rufipogon Griff. occurs widely in aquatic ecosystem of tropics and subtropics of monsoon Asia as well as Southern China. It is a vital gene source for rice breeding programs. Many populations of the species, unfortunately, have drastically diminished because of the disappearance of aquatic habitats as a result of human disturbance. In order to determine patterns of genetic variation at two stages of the life-cycle in the wild rice species, we investigated allozyme variation of four natural populations in China. Two southern populations have significant asexual reproduction while two other northern marginal populations show a mixed reproduction in China. At 22 allozyme loci, a significantly lower genetic diversity was observed in the ratoons than in the seeds of the two southern populations, whereas a significantly higher genetic diversity was found in the ratoons than in the seeds of the two northern marginal populations. The results suggest that the variation of reproductive system is probably associated with their patterns of genetic variation in the species. Moreover, a significantly higher genetic differentiation among populations found in the ratoons than in the seeds may stem from pollen-mediated gene flow among them. Finally, we propose suggestions for conservation management of the endangered species.  相似文献   

10.
The field of genetic diversity in protists, particularly phytoplankton, is under expansion. However, little is known regarding variation in genetic diversity within populations over time. The aim of our study was to investigate intrapopulation genetic diversity and genetic differentiation in the freshwater bloom-forming microalga Gonyostomum semen (Raphidophyceae). The study covered a 2-year period including all phases of the bloom. Amplified fragment length polymorphism (AFLP) was used to determine the genetic structure and diversity of the population. Our results showed a significant differentiation between samples collected during the two blooms from consecutive years. Also, an increase of gene diversity and a loss of differentiation among sampling dates were observed over time within a single bloom. The latter observations may reflect the continuous germination of cysts from the sediment. The life cycle characteristics of G.?semen, particularly reproduction and recruitment, most likely explain a high proportion of the observed variation. This study highlights the importance of the life cycle for the intraspecific genetic diversity of microbial species, which alternates between sexual and asexual reproduction.  相似文献   

11.
The reproductive composition and genetic diversity of populations of the red seaweed Lithothrix aspergillum Gray (O. Corallinales) were studied at three southern California sites (Shaw's Cove and Treasure Island, Laguna Beach; Indian Rock, Santa Catalina Island) and at a fourth site (Bodega Bay) located in northern California. Sexually reproducing populations were confined to southern California. Diploid individuals were numerically dominant over haploid (gametophytic) individuals at all sites. Intertidal and subtidal subpopulations from Shaw's Cove differed in their reproductive profiles. Most intertidal specimens found on emersed surfaces were densely branched, turf-forming, and bore tetrasporangial (68.6%), carposporangial (11.4%), or spermatangial (5.7%) conceptacles, reflecting a sexual life history; none produced asexual bispores. In contrast, 74.3% of the larger, loosely branched subtidal specimens bore bisporangial conceptacles indicative of asexual reproduction. Nearly 70% of the Indian Rock thalli showed no evidence of conceptacle formation. Only asexual, diploid bispore-producing thalli were obtained from the Bodega Bay site. Genetic diversity (mean number of alleles per locus, percent of polymorphic loci, and average expected heterozygosity) of diploid L. aspergillum populations varied with life-history characteristics and geographic location. A total of 30 alleles was inferred from zymograms of 16 loci examined by starch-gel electrophoresis; of these loci, 11 were polymorphic. The genetic diversity of sexual, diploid populations of L. aspergillum (alleles per locus [A/L] = 1.4-1.5; percent polymorphic loci [%P] = 37.5-50.0) was relatively high compared with other red seaweeds. Lowest diversity (A/L = 1.0; %P = 0.0) occurred in the exclusively asexual Bodega Bay population which consisted of genetic clones. All sexual L. aspergillum populations deviated significantly from Hardy-Wein-berg expectations due to lower than expected heterozygosity. Genetic differentiation (Wright's Fstatistic [FST]; Nei's Genetic Distance [D]) among sexually reproducing southern California populations was low (FST= 0.030) on a local scale (ca. 5 km), suggesting high levels of gene flow, but high genetic differention (FST= 0.390 and 0.406) occurred among southern California populations separated by ca. 70 km. Very high genetic differentiation (FST= 0.583–0.683) was obtained between northern and southern California populations separated by 700–760 km. Our genetic and reproductive data suggest that the L. aspergillum population from Bodega Bay is sustained by perennation, vegetative propagation, or asexual reproduction by bispores and may represent an isolated remnant or a population established by a founder event.  相似文献   

12.
Summary

Stichopus chloronotus (Brandt, 1835) is one among nine aspidochirotide holothurian species known to reproduce both sexually by broadcast spawning and asexually by transverse fission. New data on the sexual cycle of this species in La Réunion are presented here and information available on sexual and asexual reproduction in this species is summarised. Sexual reproduction on La Réunion shows a distinct seasonality with a main spawning period in the warm season (November-February). The spawning period the Great Barrier Reef appears to be at the same time. Some intriguing deviations from unity in sex-ratio, usually biased towards more male individuals, have been observed in both geographic regions (sex ratio at La Reunion 31:1). New data on the asexual reproduction of this species in La Réunion confirm the high rates of fission. The peak of asexual reproduction in both the Indian and Pacific Ocean was observed in winter (June-July). Thus, asexual reproduction in this species occurs outside the season for sexual reproduction. The rate of asexual reproduction appears to vary between sample locations. However, results of population genetic studies on S. chloronotus (Uthicke et al., 1999; Uthicke et al., 2001) indicated that in most populations investigated a maximum of about 60% of all individuals may be derived from sexual recruitment. Cluster analyses on genetic distances between populations grouped populations within Oceans together, with the exception of one sample from a nearshore reef of the GBR. Although genetic differences between the two regions exist, these are relatively small regarding the large geographic distance. We conclude that asexual reproduction in S. chloronotus is important to maintain local population sizes, but that larval exchange between populations mediated by sexual reproduction is important for colonisation of new areas and to provide connectivity between populations. Here, we present the first synthesis of these phenomena for a holothurian species.  相似文献   

13.
Asexuality is an important mode of reproduction in eukaryotic taxa and has a theoretical advantage over sexual reproduction because of the increased ability to propagate genes. Despite this advantage, hidden signs of cryptic sex have been discovered in the genomes of asexual organisms. This has provided an interesting way to address the evolutionary impact of sex in plant and animal populations. However, the identification of rare sexual reproduction events in mainly asexual species has remained a challenging task. We examined the reproductive history in populations of the plant parasitic nematode Xiphinema index by genotyping individuals collected from six grapevine fields using seven microsatellite markers. A high level of linkage disequilibrium and heterozygous excess suggested a clonality rate of 95–100%. However, we also detected rare sexual reproduction events within these highly clonal populations. By combining highly polymorphic markers with an appropriate hierarchical sampling, and using both Bayesian and multivariate analysis with phylogenetic reconstructions, we were able to identify a small number of sexually produced individuals at the overlapping zones between different genetic clusters. This suggested that sexual reproduction was favoured when and where two nematode patches came into contact. Among fields, a high degree of genetic differentiation indicated a low level of gene flow between populations. Rare genotypes that were shared by several populations suggested passive dispersal by human activities, possibly through the introduction of infected plants from nurseries. We conclude that our method can be used to detect and locate sexual events in various predominantly asexual species.  相似文献   

14.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

15.
Abstract Genetic diversity of Korean populations in Hosta clausa was investigated using starch gel electrophoresis. Hosta clausa is widespread, grows only along streamsides, and has both sexual and asexual reproduction. Populations of the species are small and isolated. Thirty-two percent of the loci examined were polymorphic, and mean genetic diversity within populations (Hep=0.082) was lower than mean estimates for species with very similar life history characteristics (0.131), particularly for its congener H. yingeri (0.250). The mean number of multilocus genotypes per population was 8.7, and genotypic diversity index (DG) was 0.84. Significant differences in allele frequencies among populations were found in all seven polymorphic loci (P < 0.001). About one-fifth of the total allozyme variation was among populations (GST=0.192). Indirect estimate of the number of migrants per generation (Nm=0.48, calculated from mean GST) and nine private alleles found indicate that gene movement among populations was low. The low levels of genetic diversity within populations and the relatively high levels of genetic diversity among populations suggest that strong moist habitat preferences, clonal reproduction, low level of gene flow among populations, genetic drift, and historical events may have played roles in the genetic structuring of the species.  相似文献   

16.
Cyclical parthenogenesis allows study of the genetic and evolutionary characteristics of groups exhibiting both asexual and sexual reproduction. The cladoceran genus Daphnia contains species which vary with respect to the relative incidence of sexual reproduction; pond species tend to undergo sexual reproduction more regularly than species found in large lakes. Previous genetic studies have focused on pond populations, generating expectations about large-lake populations that have not been fully met by recent studies. The present study of the Palearctic species Daphnia galeata further examines the genetic structure of large-lake populations. Nine local populations, from lakes in northern Germany, are examined for genetic variation at seven enzyme loci. Populations exhibit similar allelic arrays and often similar allele frequencies at the five polymorphic loci; values of Nei's genetic distance (D) ranged from 0.002 to 0.239, with a mean of 0.084. FST values range from 0.012 to 0.257, and spatial autocorrelation coefficients range from -0.533 to 0.551, for the eight alleles analyzed. With few exceptions, within-population genotypic frequencies were in Hardy-Weinberg equilibrium. There was, however, significant heterogeneity in genotypic frequencies among populations. The number of coexisting clonal groups, as determined by three locus genotypes, is high within populations. Clonal groups are widely distributed among localities. The amount of genetic divergence observed among these large-lake populations is smaller than that previously observed among pond populations and suggests that different processes may be important in determining the genetic structure and subsequent phenotypic divergence of lake versus pond populations.  相似文献   

17.
A survey of spatial and temporal variation in the frequency of electrophoretically defined genotypes in the geometrid moth Alsophila pometaria revealed a high diversity of uncommon or rare asexual genotypes and clinal distributions of two of the more common clones. There was substantial year-to-year variation in genotype frequencies in seven of eleven sites. Progeny tests have revealed that sexual reproduction is uncommon in two populations and that new asexual genotypes arise from the sexual population. The recurrent origin of asexual genotypes is likely to account for the high genetic and ecological diversity of the asexual contingent of this species' populations, in contrast to the lower genetic diversity in some obligately asexual species in which such recruitment does not occur.  相似文献   

18.
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.  相似文献   

19.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

20.
Intraspecific genetic diversity and divergence have a large influence on the adaption and evolutionary potential of species. The widely distributed starfish, Coscinasterias tenuispina, combines sexual reproduction with asexual reproduction via fission. Here we analyse the phylogeography of this starfish to reveal historical and contemporary processes driving its intraspecific genetic divergence. We further consider whether asexual reproduction is the most important method of propagation throughout the distribution range of this species. Our study included 326 individuals from 16 populations, covering most of the species’ distribution range. A total of 12 nuclear microsatellite loci and sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analysed. COI and microsatellites were clustered in two isolated lineages: one found along the southwestern Atlantic and the other along the northeastern Atlantic and Mediterranean Sea. This suggests the existence of two different evolutionary units. Marine barriers along the European coast would be responsible for population clustering: the Almeria–Oran Front that limits the entrance of migrants from the Atlantic to the Mediterranean, and the Siculo‐Tunisian strait that divides the two Mediterranean basins. The presence of identical genotypes was detected in all populations, although two monoclonal populations were found in two sites where annual mean temperatures and minimum values were the lowest. Our results based on microsatellite loci showed that intrapopulation genetic diversity was significantly affected by clonality whereas it had lower effect for the global phylogeography of the species, although still some impact on populations’ genetic divergence could be observed between some populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号