首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the two mitochondrial enzymes of the urea cycle, carbamoyl phosphate synthetase (CPS) was and ornithine transcarbamylase (OTC) was not inactivated by the Fe3+-oxygen-ascorbate model system for mixed-function oxidation [R. L. Levine, (1983) J. Biol. Chem. 258, 11828-11833]. The susceptibility of OTC was not increased by its substrates, products, or inhibitors, whereas that of CPS was markedly increased by acetylglutamate (its allosteric activator) when ATP was absent. Thus, acetylglutamate binds in the absence of ATP and exposes to oxidation essential groups of the enzyme. We estimate for this binding a KD value of 1.6 mM, which greatly exceeds the KD values (less than 10 microM) determined in the presence of ATP and bicarbonate. ATP, and even more, mixtures of ATP and bicarbonate protected CPS from inactivation. Acetylglutamate exposes the site for the ATP molecule that yields Pi, and it appears that ATP protects by binding at this site. Experiments of limited proteolysis with elastase suggest that oxidation prevents this binding of ATP and show that it accelerates cleavage of CPS by the protease, thus supporting the idea that oxidation may precede proteolysis. Trypsin, chymotrypsin, and papain also hydrolyze the oxidized enzyme considerably faster than the native enzyme. Our results also support the idea that oxidative inactivation is site specific and requires sites on the enzyme for Me2+ and, possibly, for a nucleotide.  相似文献   

2.
The dissociation of the cofactor, acetylglutamate, from the enzyme-cofactor complex formed by carbamoyl-phosphate synthetase I of rat liver in the presence of ATP, Mg2+, K+ and HCO-3 has been studied by centrifugal gel filtration. The rate of its dissociation (k, 0.13 s-1) is considerably slower than the rate of enzyme turnover (approximately equal to 6 s-1) and it is not increased by ammonia, although ammonia reduces the rate of reassociation of the cofactor. Omission of ATP, Mg2+ or K+ from the column buffer leads to virtually complete dissociation of bound acetylglutamate during passage through the column (0.5-2 min), owing to an increase in dissociation and a decrease in reassociation, but reduction of free Mg2+ alone has the opposite action. Dilution of the enzyme-cofactor complex into a large volume of buffer causes a biphasic loss of enzyme activity with a t1/2 of the first phase comparable with that of the dissociation of acetylglutamate. These findings show (a) that acetylglutamate does not dissociate with each turnover of the enzyme; (b) that there are rapid interactions between binding of acetylglutamate and ATPA (ATPA yields Pi in the overall reaction), Mg2+ and K+, suggesting that these ligands bind in close proximity; and (c) that the enzyme transiently retains considerable activity after dissociation of the cofactor.  相似文献   

3.
Rat liver carbamoyl-phosphate synthetase I is shown to have synthetase and ATPase activity in the absence of acetylglutamate. Km values for ATP, Mg2+ and K+ are greatly increased, the Km for HCO-3 is not changed much, and the Km for NH+4 is markedly reduced. Vmax for the synthetase reaction is less than 20% of that of the acetylglutamate-activated enzyme whereas Vmax for the ATPase activity is greater than 40% of that with acetylglutamate. Pulse-chase experiments with H14CO-3 show formation of less "active CO2" (the central intermediate) than with acetylglutamate; ATPase activity is reduced in proportion, but the synthetase activity is much smaller. Binding of one ATP molecule with high affinity (Kd = 20-30 microM) is shown in the absence of acetylglutamate. This appears to be the molecule of ATPB (ATPB provides the phosphoryl group of carbamoyl phosphate). In contrast, the affinity for ATPA (ATPA yields Pi) is much reduced. Initial velocity measurements without acetylglutamate show a time lag before reaching a constant velocity. At 50 microM acetylglutamate the lag is much longer, but at 10 mM acetylglutamate it is shorter. Activation by acetylglutamate requires ATP at concentrations sufficient to occupy the ATPA and the ATPB binding sites. Preincubation with 10 mM acetylglutamate alone shortens the activation time. From these findings we propose an allosteric model for activation of carbamoyl-phosphate synthetase in which there are two active states, R and R . AcGlu. Binding of ATPA is associated with the conversion of T to R. R . AcGlu differs from R in that transfer to carbamate of the gamma-phosphoryl group of ATPB appears to be facilitated.  相似文献   

4.
C H Pedemonte  J H Kaplan 《Biochemistry》1988,27(20):7966-7973
Treatment of purified renal Na,K-ATPase with dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) produces both reversible and irreversible inhibition of the enzyme activity. The reversible inhibition is unaffected by the presence of saturating concentrations of the sodium pump ligands Na+,K+, Mg2+, and ATP, while the inactivation is prevented by either ATP or K+. The kinetics of protection against inactivation indicate that K+ binds to two sites on the enzyme with very different affinities. Na+ ions with high affinity facilitate the inactivation by H2DIDS and prevent the protective effect of K+ ions. The H2DIDS-inactivated enzyme no longer exhibits a high-affinity nucleotide binding site, and the covalent binding of fluorescein isothiocyanate is also greatly reduced, but phosphorylation by Pi is unaffected. The kinetics of inactivation by H2DIDS were first order with respect to time and H2DIDS concentration. The enzyme is completely inactivated by the covalent binding of one H2DIDS molecule at pH 9 per enzyme phosphorylation site, or two H2DIDS molecules at pH 7.2. H2DIDS binds exclusively to the alpha-subunit of the Na,K-ATPase, locking the enzyme in an E2-like conformation. The profile of radioactivity, following trypsinolysis and SDS-PAGE, showed H2DIDS attachment to a 52-kDa fragment which also contains the ATP binding site. These results suggest that H2DIDS treatment modifies a specific conformationally sensitive amino acid residue on the alpha-subunit of the Na,K-ATPase, resulting in the loss of nucleotide binding and enzymatic activity.  相似文献   

5.
Catalytic and regulatory binding sites for ATP on the red cell Ca2+ pump have been investigated using fluorescein isothiocyanate (FITC). Both (Ca2+ + Mg2+)-ATPase activity and ATP-dependent Ca2+ flux are selectively and irreversibly inactivated by FITC and the pump is protected from FITC by the presence of ATP. The time course of inactivation by FITC is characteristically biphasic. Analysis of the kinetics of inactivation by FITC and protection by ATP reveals the participation of both high and low affinity binding sites for ATP and FITC. The sites binding ATP or reacting with FITC do not, however, appear to co-exist on the same enzyme molecules. Thus, "flip-flop" mechanisms for (Ca2+ + Mg2+)-ATPase, involving negative interactions between high and low affinity ATP sites, are considered unlikely. The two affinities for ATP are most simply explained by assuming that the Ca2+ pump protein exists in alternative conformational forms, E1 having a high affinity for ATP and E2 having a low affinity for ATP. Ca2+ pumping and (Ca2+ + Mg2+)-ATPase involve interconversion between these forms. It is suggested that regulation of Ca2+ pump activity by Mg-ATP reflects acceleration of the conformational transition between the E1 and E2 forms, as well as a previously described acceleration of phosphoenzyme hydrolysis (Muallem, S., and Karlish, S. J. D. (1981) Biochim. Biophys. Acta 647, 73-86; Garrahan, P. J., and Rega, A. F. (1978) Biochim. Biophys. Acta 513, 59-65).  相似文献   

6.
K+ appears to decrease the affinity of the (Na+ + K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) for its substrate, Mg2+ - ATP, and Mg2+ - ATP, in turn, appears to decrease the affinity of the enzyme for K+. These antagonisms have been investigated in terms of a quantitative model defining the magnitude of the effects as well as identifying the class of K+ sites on the enzyme involved. K+ increased the apparent Km for Mg2+ - ATP, an effect that was antagonized competitively by Na+. The data can be fitted to a model in which Mg2+ - ATP binding is prevented by occupancy of alpha-sites on the enzyme by K+ (i.e. sites of moderate affinity for K+ accessible on the "free" non-phosphorylated enzyme, in situ on the external membrane surface). By contrast, occupancy of these alpha-sites by Na+ has no effect on Mg2+ - ATP binding to the enzyme. On the other hand, Mg2+ - ATP decreased the apparent affinity of the enzyme for K+ at the alpha-sites, in terms of (i) the KD for K+ measured by K+-accelerated inactivation of the enzyme by F-, and (ii) the concentration of K+ for half-maximal activation of the K+-dependent phosphatase reaction (which reflects the terminal hydrolytic steps of the overall ATPase reaction). These data fit the same quantitative model. Although this formulation does not support schemes in which ATP binding effects the release of transported K+ from discharge sites, it is consistent with observations that K+ can inhibit the enzyme at low substrate concentrations, and that Li+, which has poor efficacy when occupying these alpha-sites, can stimulate enzymatic activity at high K+ concentrations by displacing the inhibitory K+.  相似文献   

7.
The exchange-inert tetra-ammino-chromium complex of ATP [Cr(NH3)4ATP], unlike the analogous cobalt complex Co(NH3)4ATP, inactivated Na+/K(+)-ATPase slowly by interacting with the high-affinity ATP binding site. The inactivation proceeded at 37 degrees C with an inactivation rate constant of 1.34 x 10(-3) min-1 and with a dissociation constant of 0.62 microM. To assess the potential role of the water ligands of metal in binding and inactivation, a kinetic analysis of the inactivation of Na+/K(+)-ATPase by Cr(NH3)4ATP, and its H2O-substituted derivatives Cr(NH3)3(H2O)ATP, Cr(NH3)2(H2O)2ATP and Cr(H2O)4ATP was carried out. The substitution of the H2O ligands with NH3 ligands increased the apparent binding affinity and decreased the inactivation rate constants of the enzyme by these complexes. Inactivation by Cr(H2O)4ATP was 29-fold faster than the inactivation by Cr(NH3)4ATP. These results suggested that substitution to Cr(III) occurs during the inactivation of the enzyme. Additionally hydrogen bonding between water ligands of metal and the enzyme's active-site residues does not seem to play a significant role in the inactivation of Na+/K(+)-ATPase by Cr(III)-ATP complexes. Inactivation of the enzyme by Rh(H2O)nATP occurred by binding of this analogue to the high-affinity ATP site with an apparent dissociation constant of 1.8 microM. The observed inactivation rate constant of 2.11 x 10(-3) min-1 became higher when Na+ or Mg2+ or both were present. The presence of K+ however, increased the dissociation constant without altering the inactivation rate constant. High concentrations of Na+ reactivated the Rh(H2O)nATP-inactivated enzyme. Co(NH3)4ATP inactivates Na+/K(+)-ATPase by binding to the low-affinity ATP binding site only at high concentrations. However, inactivation of the enzyme by Cr(III)-ATP or Rh(III)-ATP complexes was prevented when low concentrations of Co(NH3)4ATP were present. This indicates that, although Co(NH3)4ATP interacts with both ATP sites, inactivation occurs only through the low-affinity ATP site. Inactivation of Na+/K(+)-ATPase was faster by the delta isomer of Co(NH3)4ATP than by the delta isomer. Co(NH3)4ATP, but not Cr(H2O)4ATP or adenosine 5'-[beta,gamma-methylene]triphosphate competitively inhibited K(+)-activated p-nitrophenylphosphatase activity of Na+/K(+)-ATPase, which is assumed to be a partial reaction of the enzyme catalyzed by the low-affinity ATP binding site.  相似文献   

8.
Treatment of isolated canine renal Na,K-ATPase with a stable diazomethane analog, 4-(diazomethyl)-7-(diethylamino)-coumarin (DEAC), results in enzyme inactivation. The inactivation rate was dramatically increased when the enzyme was treated with DEAC in the presence of ATP and Mg2+ (in imidazole buffer) or Pi and Mg2+, conditions which produce enzyme phosphorylation. Inactivation in the presence of Pi and Mg2+ could be partially prevented by Na+ and almost completely prevented by K+. The quantity of DEAC covalently bound to the Na,K-ATPase was determined spectrophotometrically. The extent of inactivation was linearly related to the amount of K-protectable DEAC incorporation. Complete inactivation of ATPase activity occurred with 2.14 +/- 0.18 nmol of DEAC covalently bound/mg of protein. This suggests that only 1 or 2 carboxyl residues/catalytic center (estimated by high affinity ADP binding) are involved in the modification leading to inactivation. The modified enzyme exhibited normal levels of high affinity [3H]ADP (and hence ATP) binding, thus, the nucleotide-binding domain of the enzyme seems unaffected by the modification. In contrast, under conditions where native enzyme was able to occlude 3.82 nmol of K+ ions/mg of protein, DEAC-modified enzyme occluded only 0.33 nmol of K+ ions. Na+ occlusion by the enzyme (in the presence of oligomycin) was also reduced (by 80%) following treatment with DEAC. Phosphorylation by [32P]inorganic phosphate and Na(+)-activated phosphorylation of the modified enzyme with [32P]ATP yielded reduced levels of phosphoenzyme (about 36%) compared to native enzyme. The DEAC-modified [32P]phosphoenzyme formed from [32P]ATP was insensitive to the addition of K+ ions, under conditions which led to the rapid hydrolysis of native phosphoenzyme. Gel electrophoresis of modified protein revealed strong fluorescence labeling of the alpha-subunit, which was substantially reduced if treatment with DEAC was performed in the presence of K+ ions. Partial tryptic digestion and electrophoretic analysis revealed normal degradation patterns in the presence of ADP (E1 form) but the typical patterns, seen with K+ ions (E2K) or Na+ ions (E1Na) in native enzyme, were absent. A typical E2-like tryptic degradation pattern was seen, however, in the presence of vanadate ions and ouabain, suggesting that the modification does not freeze the enzyme in an E1 conformation and that the enzyme is still able to undergo the E1E2 conformational transition after modification. Our results suggest that a small number of carboxyl residues in the sodium pump alpha-subunit (perhaps one) are essential for K+ and Na+ binding and stabilizing the occluded enzyme cation forms. Esterification of the carboxyl groups by DEAC inactivates the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We have recently shown that inactivation of renal Na,K-ATPase by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide occurs via an intramolecular cross-link formed between an activated carboxyl group and an endogenous nucleophile (Pedemonte, C.H., and Kaplan, J.H. (1986) J. Biol. Chem. 261, 3632-3639). The modified enzyme shows the same level of Rb+ binding as untreated enzyme: 3.16 and 2.93 ATP-sensitive mumol of Rb+ binding/mumol of phosphoenzyme, respectively. Thus, the Rb+ binding site and the transition accomplished by low affinity nucleotide binding which accelerates de-occlusion are not greatly affected by the carbodiimide inactivation. 1 mM K+ reduces the ADP binding to the high affinity nucleotide binding site to the same extent in normal and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-treated enzyme and Na+ counteracts this effect. Thus, the competition between Na+ and K+ ions for binding to the free enzyme are also largely unaltered by the modification. Phosphorylation from ATP (microM) in the presence of Na+ and Mg2+ ions and from inorganic phosphate in the presence of Mg2+ ions (in the absence or presence of ouabain) is greatly inhibited (85%) following carbodiimide treatment. The extent of inhibition of phosphorylation quantitatively correlates with the residual Na,K-ATPase activity (15%). Consequently, the rate of inactivation by carbodiimide is reduced when a greater proportion of the enzyme is in the phosphorylated form. Fluoroscein isothiocyanate, which inhibits the Na,K-ATPase by covalently modifying a lysine residue close to the high affinity binding site for ATP in the alpha-subunit does not bind to the carbodiimide-inactivated enzyme. Since high affinity nucleotide binding is only partially inhibited by the modification produced by the carbodiimide this suggests that the lysine residue to which fluoroscein isothiocyanate binds is not specifically required for competent nucleotide binding.  相似文献   

10.
Human erythrocyte gamma-glutamylcysteine synthetase is inactivated by the disulfide cystamine (2,2'-dithiobis-(ethylamine)) at pH 8.2 with a rate constant of 1020 min-1 mM-1. Magnesium ion and various combinations of substrates and products confer differing degrees of protection against cystamine inactivation, thus allowing the detection and quantification of certain enzyme-ligand interactions. By measuring inactivation rates as a function of ligand concentrations in incomplete reaction mixtures, we have obtained evidence for the following complexes: enzyme . Mg2+; enzyme . Mg2+ . MgATP2-; enzyme . Mg2+ . L-glutamate; enzyme . Mg2+ . MgATP2- . L-glutamate; enzyme . Mg2+ . L-gamma-glutamyl-L-alpha-aminobutyrate. The data also imply the existence of enzyme . (Mg2+)2 . MgATP2- . L-glutamate and several enzyme forms resulting from the weak binding to L-alpha-aminobutyrate. The methods used permit the calculation of cystamine inactivation rates for most of these enzyme forms and also give values for the equilibrium constants describing their formation.  相似文献   

11.
Recently, we have shown that a hydrophobic amine (AU-1421) produces an irreversible inactivation of Na+/K(+)-ATPase activity. This inactivation was prevented by K+ and its congeners. In this study, we examined the possibility of Ca2+ or ethylenediamine as a probe of the K+ occlusion center of Na+/K(+)-ATPase. The inactivation by AU-1421 was prevented by Ca2+ with an apparent high affinity (approximately 0.1 mM). Ca2+ protection was cancelled by high concentrations of ATP, ADP or Mg2+. Ca2+ and K+ were similar in these respects. Kinetic analyses of the above data indicated the presence of two AU-1421 occlusion sites on the enzyme, either one of which is susceptible to Ca2+ occlusion. Ethylenediamine also prevented the inactivation by AU-1421 or by C12E8 solubilization of the enzyme, suggesting that ethylenediamine, like K+, stabilized the enzyme. However, an apparent affinity of ethylenediamine (approximately 1.4 mM) was one order of magnitude lower than that of K+ (approximately 0.2 mM), and the protective manner did not show a simple competition. In addition, ethylenediamine binding was unaffected by ATP or ADP at a low affinity site, and antagonized K+ binding. From these results we concluded that ethylenediamine does not act like K+ or Ca2+ in protecting AU-1421 inactivation, since it can't stabilize the enzyme conformation as an E2 (K(+)-bound form).  相似文献   

12.
Acetylglutamate and ATP accelerate the oxidative inactivation of carbamoyl phosphate synthetase I by mixtures of Fe3+, ascorbate, and O2, but the mechanism of the inactivation differs with each ligand. In the presence of acetylglutamate, MgATP prevents, Mg2+, Mn2+, and catalase have no effect, and EDTA increases the inactivation, and the two phosphorylation steps of the enzyme reaction are lost simultaneously. The inactivation appears to be mediated by dehydroascorbate and is associated with the reversible oxidation of the highly reactive cysteines 1327 and 1337 and with oxidation of non-thiolic groups in the second 40-kDa domain (the enzyme consists of 4 domains of 40, 40, 60, and 20 kDa, from the amino terminus). The data are consistent with oxidation of groups at or near the site for ATPA (ATPA yields Pi; ATPB yields carbamoyl phosphate), and with the location of this site at the interphase between the second 40-kDa and the COOH-terminal domains. The oxidative inactivation promoted by ATP is inhibited by Mg2+, Mn2+, catalase, and EDTA, is not mediated by dehydroascorbate, and is not associated with oxidation of cysteines 1327 and 1337. Groups in the 60-kDa domain are oxidized. The phosphorylation step involving ATPB is lost preferentially, and the inactivation and the binding of ATPB exhibit the same dependency on the concentration of ATP. The results indicate that the oxidation is catalyzed by FeATP bound at the site for ATPB and support the binding of ATPB in the 60-kDa domain. We also demonstrate that mercaptoethanol, reducing impurities in glycerol, and dithioerythritol, in the presence of EDTA, replace ascorbate in the oxidative system. In addition, we study the influence of the oxidation on the degradation of the enzyme by rat liver lysosomes, mitochondria, and cytosol.  相似文献   

13.
The first step towards ATP synthesis by the Ca2-ATPase of sarcoplasmic reticulum is the phosphorylation of the enzyme by Pi. Phosphoenzyme formation requires both Pi and Mg2+. At 35 degrees C, the presence of a Ca2+ gradient across the vesicle membrane increases the apparent affinity of the ATPase for Pi more than 10-fold, whereas it had no effect on the apparent affinity for Mg2+. In the absence of a Ca2+ gradient, the phosphorylation reaction is inhibited by both K+ and Na+ at all Mg2+ concentrations used. However, in the presence of 1 mM Mg2+ and of a transmembrane Ca2+ gradient, the reaction is still inhibited by Na+, but the inhibition promoted by K+ is greatly decreased. When the Mg2+ concentration is raised above 2 mM, the enzyme no longer discriminates between K+ and Na+, and the phosphorylation reaction is equally inhibited by the two cations. Trifluoperazine, ruthenium red and spermidine were found to inhibit the phosphorylation reaction by different mechanisms. In the absence of a Ca2+ gradient, trifluoperazine competes with the binding to the enzyme of both Pi and Mg2+, whereas spermidine and ruthenium red were found to compete only with Mg2+. The data presented suggest that the enzyme has different binding sites for Mg2+ and for Pi.  相似文献   

14.
Treatment of the canine renal Na,K-ATPase with N-(2-nitro-4-isothiocyanophenyl)-imidazole (NIPI), a new imidazole-based probe, results in irreversible loss of enzymatic activity. Inactivation of 95% of the Na,K-ATPase activity is achieved by the covalent binding of 1 molecule of [3H]NIPI to a single site on the alpha-subunit of the Na,K-ATPase. The reactivity of this site toward NIPI is about 10-fold greater when the enzyme is in the E1Na or sodium-bound form than when it is in the E2K or potassium-bound form. K+ ions prevent the enhanced reactivity associated with Na+ binding. Labeling and inactivation of the enzyme is prevented by the simultaneous presence of ATP or ADP (but not by AMP). The apparent affinity with which ATP prevents the inactivation by NIPI at pH 8.5 is increased from 30 to 3 microM by the presence of Na+ ions. This suggests that the affinity with which native enzyme binds ATP (or ADP) at this pH is enhanced by Na+ binding to the enzyme. Modification of the single sodium-responsive residue on the alpha-subunit of the Na,K-ATPase results in loss of high affinity ATP binding, without affecting phosphorylation from Pi. Modification with NIPI probably alters the adenosine binding region without affecting the region close to the phosphorylated carboxyl residue aspartate 369. Tightly bound (or occluded) Rb+ ions are not displaced by ATP (4 mM) in the inactivated enzyme. Thus modification of a single residue simultaneously blocks ATP acting with either high or low affinity on the Na,K-ATPase. These observations suggest that there is a single residue on the alpha-subunit (probably a lysine) which drastically alters its reactivity as Na+ binds to the enzyme. This lysine residue is essential for catalytic activity and is prevented from reacting with NIPI when ATP binds to the enzyme. Thus, the essential lysine residue involved may be part of the ATP binding domain of the Na,K-ATPase.  相似文献   

15.
The Na(+)-dependent or E1 stages of the Na,K-ATPase reaction require a few micromolar ATP, but submillimolar concentrations are needed to accelerate the K(+)-dependent or E2 half of the cycle. Here we use Co(NH(3))(4)ATP as a tool to study ATP sites in Na,K-ATPase. The analogue inactivates the K(+) phosphatase activity (an E2 partial reaction) and the Na,K-ATPase activity in parallel, whereas ATP-[(3)H]ADP exchange (an E1 reaction) is affected less or not at all. Although the inactivation occurs as a consequence of low affinity Co(NH(3))(4)ATP binding (K(D) approximately 0.4-0.6 mm), we can also measure high affinity equilibrium binding of Co(NH(3))(4)[(3)H]ATP (K(D) = 0.1 micro m) to the native enzyme. Crucially, we find that covalent enzyme modification with fluorescein isothiocyanate (which blocks E1 reactions) causes little or no effect on the affinity of the binding step preceding Co(NH(3))(4)ATP inactivation and only a 20% decrease in maximal inactivation rate. This suggests that fluorescein isothiocyanate and Co(NH(3))(4)ATP bind within different enzyme pockets. The Co(NH(3))(4)ATP enzyme was solubilized with C(12)E(8) to a homogeneous population of alphabeta protomers, as verified by analytical ultracentrifugation; the solubilization did not increase the Na,K-ATPase activity of the Co(NH(3))(4)ATP enzyme with respect to parallel controls. This was contrary to the expectation for a hypothetical (alphabeta)(2) membrane dimer with a single ATP site per protomer, with or without fast dimer/protomer equilibrium in detergent solution. Besides, the solubilized alphabeta protomer could be directly inactivated by Co(NH(3))(4)ATP, to less than 10% of the control Na,K-ATPase activity. This suggests that the inactivation must follow Co(NH(3))(4)ATP binding at a low affinity site in every protomeric unit, thus still allowing ATP and ADP access to phosphorylation and high affinity ATP sites.  相似文献   

16.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

17.
J M Argüello  J H Kaplan 《Biochemistry》1990,29(24):5775-5782
Treatment of renal Na,K-ATPase with N-acetylimidazole (NAI) results in loss of Na,K-ATPase activity. The inactivation kinetics can be described by a model in which two classes of sites are acetylated by NAI. The class I sites are rapidly reacting, the acetylation is prevented by the presence of ATP (K0.5 congruent to 8 microM), and the inactivation is reversed by incubation with hydroxylamine. These data suggest that the class I sites are tyrosine residues at the ATP binding site. The second class of sites are more slowly reacting, not protected by ATP, nor reversed by hydroxylamine treatment. These are probably lysine residues elsewhere in the protein. The associated K-stimulated p-nitrophenylphosphatase activity is inactivated by acetylation of the class II sites only; thus the tyrosine residues associated with ATP binding to the catalytic center are not essential for phosphatase activity. Inactivated enzyme no longer has high-affinity ATP binding associated with the catalytic site, although low-affinity ATP effects (inhibition of phosphatase and deocclusion of Rb) are still present. The inactivated enzyme can still be phosphorylated by Pi, occlude Rb+ ions, and undergo the major conformational transitions between the E1 Na and E2 K forms of the enzyme. Thus acetylation of the Na,K-ATPase by NAI inhibits high-affinity ATP binding to the catalytic center and produces inactivation.  相似文献   

18.
Interactions between the ligands Mg2+, K+, and substrate and the Na+/K+-activated ATPase were examined in terms of a rapid-equilibrium, random-order, terreactant kinetic scheme for the K+-nitrophenyl phosphatase reaction that is catalyzed by this enzyme. At 37 degrees C and pH 7.5 the derived values for the dissociation constants from the free enzyme were 0.2, 0.08, and 1.4 mM for Mg2+, K+, and substrate, respectively. For Mg2+ interactions, the presence of 20% (v/v) dimethyl sulfoxide (Me2SO) increased the calculated affinity 25-fold; higher concentrations increased affinity still further. Neither reducing the temperature to 20 degrees C nor altering the pH from 6.5 to 8.3 appreciably changed the affinity for Mg2+ in the absence or presence of Me2SO. The Mg2+ sites are thus characterized by an absence of functional groups ionizable in the pH range 6.5-8.3, with binding driven by entropy changes, and with Me2SO, probably through solvation effects on the protein, increasing affinity for Mg2+ close to that for Ca2+ and Mn2+. By contrast, for K+ interactions, the presence of 20% Me2SO increased the calculated affinity only by half; moreover, reducing the temperature to 20 degrees C and the pH to 6.5 both increased affinity and diminished the response to Me2SO. The K+ sites are thus characterized by a marked sensitivity to pH and temperature, presumably through alterations in enzyme conformational equilibria that in turn are modifiable by Me2SO. Inhibition by higher concentrations of Mg2+, which varies inversely with the K+ concentration, was decreased by Me2SO. Finally, for substrate interactions, the presence of 20% Me2SO increased the calculated affinity 4-fold, and, as for Mg2+-binding, neither reducing the temperature nor varying the pH over the range 6.5-8.3 appreciably altered the affinity in the absence or presence of Me2SO. Thus, the substrate sites, like the Mg2+ sites, are characterized by an absence of functional groups ionizable in this range, with binding driven by entropy changes, and with Me2SO increasing affinity for substrate, in this case probably through favoring the partitioning of substrate from the medium into the hydrophobic active site.  相似文献   

19.
1. A membrane vesicle fraction containing a high (K+ + H+)-ATPase activity was isolated from porcine gastric mucosa. The enzyme has a pH optimum of 7.0 and is stimulated by T1+, K+, Rb+ and NH4+ with KA values of 0.13, 2.7, 7.6 and 26 mM, respectively, at this pH. 2. Incubation of the isolated membrane fraction with butanedione leads to inactivation of the (K+ + H+)-ATPase activity. The pH-dependence of the (K+ + H+)-ATPase activity. The pH-dependence of the inactivation and the reversibility of the reaction, observed after removal of excess butanedione and borate, indicate that modification of arginine is involved. 3. The inactivation of (K+ + H+)-ATPase activity by butanedione is time-dependent and follows second-order kinetics. From the dependence of the inactivation rate on the reagent concentration it appears that a single arginine residue is involved in the inactivation of the (K+ + H+)-ATPase activity. 4. ATP, deoxy-ATP, ADP and adenylyl imidodiphosphate (AMPPNP), but not CTP, GTP and ITP which are poor substrates, protect the enzyme against butanedione inactivation, suggesting that the essential arginine residue is located in the ATP binding centre. 5. In the presence of Mg2+ the butanedione inactivation is increased, and the protection by ATP, deoxy-ATP and ADP (but not that by AMPPNP) is less pronounced. This suggests that Mg2+ induces a conformational change in the enzyme, exposing the arginine group and coinciding with phosphorylation and subsequent release of ADP from its binding site.  相似文献   

20.
Modification of the type II calmodulin-dependent protein kinase by 5'-p-fluorosulfonylbenzoyl adenosine (FSBA) resulted in a time-dependent inactivation of the enzyme. The reaction followed pseudo-first-order kinetics and showed a nonlinear dependence on reagent concentration. The rate of inactivation was sensitive to Mg2+- and calmodulin-induced conformational changes on the enzyme. However, the enhancing effects of these ligands were not additive; indeed, the kinetic parameters of the Mg2+-stimulated inactivation reaction with FSBA (Kinact = 2.4 mM; kappa max = 0.12 min-1) were almost unaffected by the simultaneous addition of calmodulin (Kinact = 1.5 mM; kappa max = 0.086 min-1). Protection from inactivation by FSBA was provided by Mg2+-ADP which is consistent with modification of the catalytic site. An analysis of the protective effect of Mg2+-ADP in the absence (Kd = 590 microM) and presence (Kd = 68 microM) of calmodulin demonstrated that binding of the modulator protein to the enzyme increases the affinity of the protein kinase for nucleotides. Modification by FSBA resulted in labeling of both Tyr and Lys residues but only labeling of Lys was decreased by Mg2+-ADP which is consistent with the hypothesis that a conserved Lys residue is important in nucleotide binding to the protein kinase. However, the kinetic results of the inactivation reaction suggest that this Lys is not involved in mediating the calmodulin-promoted increase in the affinity of the enzyme for Mg2+-nucleotide complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号