首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that, in rats, central and peripheral ghrelin increases food intake mainly through activation of neuropeptide Y (NPY) neurons. In contrast, intracerebroventricular (ICV) injection of ghrelin inhibits food intake in neonatal chicks. We examined the mechanism governing this inhibitory effect in chicks. The ICV injection of ghrelin or corticotropin-releasing factor (CRF), which also inhibits feeding and causes hyperactivity in chicks. Thus, we examined the interaction of ghrelin with CRF and the hypothalamo-pituitary-adrenal (HPA) axis. The ICV injection of ghrelin increased plasma corticosterone levels in a dose-dependent or a time-dependent manner. Co-injection of a CRF receptor antagonist, astressin, attenuated ghrelin-induced plasma corticosterone increase and anorexia. In addition, we also investigated the effect of ghrelin on NPY-induced food intake and on expression of hypothalamic NPY mRNA. Co-injection of ghrelin with NPY inhibited NPY-induced increase in food intake, and the ICV injection of ghrelin did not change NPY mRNA expression. These results indicate that central ghrelin does not interact with NPY as seen in rodents, but instead inhibits food intake by interacting with the endogenous CRF and its receptor.  相似文献   

2.
目的:探究Ghrelin对大鼠摄食的影响及orexins信号通路的调控作用。方法:采用免疫组织化学染色的方法观察Ghrelin免疫阳性神经元轴突末梢与orexin神经元的突触联系以及下丘脑外侧区(LHA)内c-fos的表达。侧脑室注射抗-orexin-A IgG和抗-orexin-B IgG混合液、抗-黑色素浓集激素(MCH)IgG、NPY-1受体拮抗剂后测量大鼠摄食量,观察其对ghrelin诱导摄食的影响。结果:Ghrelin免疫阳性神经元轴突末梢与orexin神经元的突触相接触。侧脑室注射ghrelin可诱导orexin神经元内c-fos表达,但是没有引起MCH神经元内c-fos的表达。预先注射抗-NPY IgG抗体,ghrelin仍然可诱导orexin神经元内c-fos表达。侧脑室预先注射抗-orexin-A IgG和抗-orexin-B IgG抗体可减弱ghrelin促摄食作用,但是预先注射抗-MCH IgG抗体对ghrelin诱导的摄食作用没有明显影响。注射NPY受体拮抗剂可进一步加强抗-orexin-A IgG抗体和抗-orexin-B IgG抗体对ghrelin诱导摄食的抑制效应。结论:ghrelin可能与orexin系统相互作用共同参与摄食和能量平衡的调控。  相似文献   

3.
Animals living in temperate climates with predictable seasonal changes in food availability may use seasonal information to engage different metabolic strategies. Siberian hamsters decrease costs of thermoregulation during winter by reducing food intake and body mass in response to decreasing or short-day lengths (SD). These experiments examined whether SD reduction in food intake in hamsters is driven, at least in part, by altered behavioral responses to ghrelin, a gut-derived orexigenic peptide which induces food intake via NPY-dependent mechanisms. Relative to hamsters housed in long-day (LD) photoperiods, SD hamsters consumed less food in response to i.p. treatment with ghrelin across a range of doses from 0.03 to 3 mg/kg. To determine whether changes in photoperiod alter behavioral responses to ghrelin-induced activation of NPY neurons, c-Fos and NPY expression were quantified in the arcuate nucleus (ARC) via double-label fluorescent immunocytochemistry following i.p. treatment with 0.3 mg/kg ghrelin or saline. Ghrelin induced c-Fos immunoreactivity (-ir) in a greater proportion of NPY-ir neurons of LD relative to SD hamsters. In addition, following ghrelin treatment, a greater proportion of ARC c-Fos-ir neurons were identifiable as NPY-ir in LD relative to SD hamsters. Changes in day length markedly alter the behavioral response to ghrelin. The data also identify photoperiod-induced changes in the ability of ghrelin to activate ARC NPY neurons as a possible mechanism by which changes in day length alter food intake.  相似文献   

4.
Ghrelin, an orexigenic hormone, directly activates neuropeptide (NPY) neurons in the hypothalamic arcuate nucleus (ARC), and thereby stimulates food intake. The hypothalamic level of AMP-activated protein kinase (AMPK), an intracellular energy sensor, is activated by peripheral and central administration of ghrelin. We examined whether ghrelin regulates AMPK activity in NPY neurons of the ARC. Single neurons were isolated from the ARC and cytosolic Ca2+ concentration ([Ca2+]i) was measured by fura-2 microfluorometry, followed by immunocytochemical identification of NPY, phospho-AMPK, and phospho-acetyl-CoA carboxylase (ACC). Ghrelin and AICAR, an AMPK activator, increased [Ca2+]i in neurons isolated from the ARC. The ghrelin-responsive neurons highly overlapped with AICAR-responsive neurons. The neurons that responded to both ghrelin and AICAR were primarily NPY-immunoreactive neurons. Treatment with ghrelin increased phosphorylation of AMPK and ACC. An AMPK inhibitor, compound C, suppressed ghrelin-induced [Ca2+]i increases. These results demonstrate that ghrelin increases [Ca2+]i via AMPK-mediated signaling in the ARC NPY neurons.  相似文献   

5.
Studies showed that the metabolic unlike the neuroendocrine effects of ghrelin could be abrogated by co-administered unacylated ghrelin. The aim was to investigate the interaction between ghrelin and desacyl ghrelin administered intraperitoneally on food intake and neuronal activity (c-Fos) in the arcuate nucleus in non-fasted rats. Ghrelin (13 μg/kg) significantly increased food intake within the first 30 min post-injection. Desacyl ghrelin at 64 and 127 μg/kg injected simultaneously with ghrelin abolished the stimulatory effect of ghrelin on food intake. Desacyl ghrelin alone at both doses did not alter food intake. Both doses of desacyl ghrelin injected separately in the light phase had no effects on food intake when rats were fasted for 12 h. Ghrelin and desacyl ghrelin (64 μg/kg) injected alone increased the number of Fos positive neurons in the arcuate nucleus compared to vehicle. The effect on neuronal activity induced by ghrelin was significantly reduced when injected simultaneously with desacyl ghrelin. Double labeling revealed that nesfatin-1 immunoreactive neurons in the arcuate nucleus are activated by simultaneous injection of ghrelin and desacyl ghrelin. These results suggest that desacyl ghrelin suppresses ghrelin-induced food intake by curbing ghrelin-induced increased neuronal activity in the arcuate nucleus and recruiting nesfatin-1 immunopositive neurons.  相似文献   

6.
Morley JE  Farr SA  Sell RL  Hileman SM  Banks WA 《Peptides》2011,32(4):776-780
In recent years, there have been a large number of neuropeptides discovered that regulate food intake. Many of these peptides regulate food intake by increasing or decreasing nitric oxide (NO). In the current study, we compared the effect of the food modulators ghrelin, NPY and CCK in NOS KO mice. Satiated homozygous and heterozygous NOS KO mice and their wild type controls were administered ghrelin ICV. Food intake was measured for 2 h post injection. Ghrelin did not increase food intake in the homozygous NOS KO mice compared to vehicle treated NOS KO mice, whereas food intake was increased in the wild type controls compared to vehicle treated wild type controls. NPY was administered ICV and food intake measured for 2 h. Homozygous NOS KO mice showed no increase in food intake after NPY administration, whereas the wild type controls did. In our final study, we administered CCK intraperitoneally to homozygous and heterozygous NOS KO mice and their wild type controls after overnight food deprivation. Food intake was measured for 1 h after injection. CCK inhibited food intake in wild type mice after overnight food deprivation, however, CCK failed to inhibit food intake in the NOS KO mice. The heterozygous mice showed partial food inhibition after the CCK. The current results add further support to the theory that NO is a central mediator in food intake.  相似文献   

7.
Ghrelin, released from the stomach, stimulates food intake through activation of the ghrelin receptor (GHS-R) located on neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons in the hypothalamus. A role for the energy sensor AMP-activated protein kinase (AMPK) and its downstream effector uncoupling protein 2 (UCP2) in the stimulatory effect of exogenous ghrelin on NPY/AgRP expression and food intake has been suggested. This study aimed to investigate whether a rise in endogenous ghrelin levels is able to influence hypothalamic AMPK activity, pACC, UCP2 and NPY/AgRP expression through activation of GHS-R. An increase in endogenous ghrelin levels was established by fasting (24h) or by induction of streptozotocin(STZ)-diabetes (15 days) in GHS-R(+/+) and GHS-R(-/-) mice. GHS-R(+/+) mice showed a significant increase in AgRP and NPY mRNA expression after fasting, which was not observed in GHS-R(-/-) mice. Fasting did not affect AMPK activity nor ACC phosphorylation in both genotypes and increased UCP2 mRNA expression. The hyperghrelinemia associated with STZ-induced diabetes was accompanied by an increased NPY and AgRP expression in GHS-R(+/+) but not in GHS-R(-/-) mice. AMPK activity and UCP2 expression in GHS-R(+/+) mice after induction of diabetes were decreased to a similar extent in both genotypes. Exogenous ghrelin administration tended to decrease hypothalamic AMPK activity. In conclusion, an increase in endogenous ghrelin levels triggered by fasting or STZ-induced diabetes stimulates the expression of AgRP and NPY via interaction with the GHS-R. The changes in AMPK activity, pACC and UCP2 occur independently from GHS-R suggesting that they do not play a major role in the orexigenic effect of endogenous ghrelin.  相似文献   

8.
There is an increasing interest in elucidating the molecular mechanisms by which voluntary exercise is regulated. In this study, we examined how the central nervous system regulates exercise. We used SPORTS rats, which were established in our laboratory as a highly voluntary murine exercise model. SPORTS rats showed lower levels of serum ghrelin compared with those of the parental line of Wistar rats. Intracerebroventricular and intraperitoneal injection of ghrelin decreased wheel-running activity in SPORTS rats. In addition, daily injection of the ghrelin inhibitor JMV3002 into the lateral ventricles of Wistar rats increased wheel-running activity. Co-administration of obestatin inhibited ghrelin-induced increases in food intake but did not inhibit ghrelin-induced suppression of voluntary exercise in rats. Growth hormone secretagogue receptor (GHSR) in the hypothalamus and hippocampus of SPORTS rats was not difference that in control rats. We created an arcuate nucleus destruction model by administering monosodium glutamate (MSG) to neonatal SPORTS rats. Injection of ghrelin into MSG-treated rats decreased voluntary exercise but did not increase food intake, suggesting that wheel-running activity is not controlled by the arcuate nucleus neurons that regulate feeding. These results provide new insights into the mechanism by which ghrelin regulates voluntary activity independent of arcuate nucleus neurons.  相似文献   

9.
Ghrelin stimulates food intake in part by activating hypothalamic neuropeptide Y (NPY) neurons/agouti related peptide (AGRP) neurons. We investigated the role of AGRP/melanocortin signaling in ghrelin-induced food intake by studying melanocortin 3 and 4 receptor knockout (MC3R KO and MC4R KO) mice. We also determined whether reduced ghrelin levels and/or an altered sensitivity to the GH-stimulating effects of ghrelin accompany the obesity syndromes of MC3R KO and MC4R KO mice. Compared to wild-type (WT) mice, the effects of ghrelin on food intake were reduced in MC3R KO and MC4R KO mice and circulating ghrelin levels were reduced in female MC4R KO mice. Female MC3R KO and MC4R KO mice exhibited a diminished responsiveness to the GH-releasing effects of ghrelin. Thus, deletion of the MC3R or MC4R results in a decreased sensitivity to ghrelin and verifies the involvement in the melanocortin system in ghrelin-induced food intake.  相似文献   

10.
Ghrelin is a 28-amino acid acylated peptide and is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The GHS-R is expressed in hypothalamic nuclei, including the arcuate nucleus (Arc) where it is colocalized with neuropeptide Y (NPY) neurons. In the present study, we examined the effects of ghrelin on feeding and energy substrate utilization (respiratory quotient; RQ) following direct injections into either the arcuate or the paraventricular nucleus (PVN) of the hypothalamus. Ghrelin was administered at the beginning of the dark cycle at doses of 15-60 pmol to male and female rats. In feeding studies, food intake was measured 2 and 4 h postinjection. Separate groups of rats were injected with ghrelin, and the RQ (VCO(2)/VO(2)) was measured using an open circuit calorimeter over a 4-h period. Both Arc and PVN injections of ghrelin increased food intake in male and female rats. Ghrelin also increased RQ, reflecting a shift in energy substrate utilization in favor of carbohydrate oxidation. Because these effects are similar to those observed after PVN injection of NPY, we then assessed the impact of coinjecting ghrelin with NPY into the PVN. When rats were pretreated with very low doses of ghrelin (2.5-10 pmol), NPY's (50 pmol) effects on eating and RQ were potentiated. Overall, these data are in agreement with evidence suggesting that ghrelin functions as a gut-brain endocrine hormone implicated in the regulation of food intake and energy metabolism. Our findings are also consistent with a possible interactive role of hypothalamic ghrelin and NPY systems.  相似文献   

11.
12.
Ghrelin, a circulating growth-hormone releasing peptide derived from stomach, stimulates food intake through neuropeptide Y (NPY) neurons of the arcuate nucleus in the hypothalamus (ARC). We examined the effect of ghrelin microinjected into the ARC and the influence of intracerebroventricular (i.c.v.) pretreatment with a GHRH or NPY receptor antagonist on ghrelin-induced food intake in free-feeding male rats. Ghrelin (0.1-1 microg) stimulated food intake in a dose-dependent manner, and this effect was reduced by 55-60% by the Y(5) NPY receptor antagonist (10 microg i.c.v.), but not by the GHRH receptor antagonist MZ-4-71 (10 microg i.c.v.). We also evaluated the effects of passive ghrelin immunoneutralization by the microinjection of anti-ghrelin immunoglobulins (IgGs) intracerebroventricularly or directly into the ARC on food intake in free-feeding and fasted male rats. i.c.v. administration of anti-ghrelin IgGs decreased cumulative food intake over 24 h, whereas microinfusion of anti-ghrelin IgGs into the ARC induced only a short-lived (2 and 6 h) effect. Collectively, these data would indicate that centrally derived ghrelin has a major role in the control of food intake in rats and, in this context, blood-born ghrelin would be effective only in relation to its ability to reach the ARC, which is devoid of blood-brain barrier.  相似文献   

13.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

14.
Leptin and ghrelin are known to be main hormones involved in the control of food intake, with opposing effects. Here we have explored whether changes in the leptin and ghrelin system are involved in the long-term effects of high-fat (HF) diet feeding in rats and whether sex-associated differences exist. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or an HF-diet. Food intake and body weight were followed. Gastric and serum levels of leptin and ghrelin, and mRNA levels of leptin (in stomach and adipose tissue), ghrelin (in stomach), and NPY, POMC, and leptin and ghrelin receptors (OB-Rb and GHS-R) (in the hypothalamus) were measured. In both males and females, total caloric intake and body weight were greater under the HF-diet feeding. In females, circulating ghrelin levels and leptin mRNA expression in the stomach were higher under HF-diet. HF-diet feeding also resulted in higher hypothalamic NPY/POMC mRNA levels, more marked in females, and in lower OB-Rb mRNA levels, more marked in males. In addition, in females, serum ghrelin levels correlated positively with hypothalamic NPY mRNA levels, and these with caloric intake. In males, hypothalamic OB-Rb mRNA levels correlated positively with POMC mRNA levels and these correlated negatively with caloric intake and with body weight. These data reflect differences between sexes in the effects of HF-diet feeding on food intake control systems, suggesting an impairment of the anorexigenic leptin-POMC system in males and an over-stimulation of the orexigenic ghrelin-NPY system in females.  相似文献   

15.
Skibicka KP  Dickson SL 《Peptides》2011,32(11):2265-2273
The incidence of obesity is increasing at an alarming rate and this worldwide epidemic represents a significant decrease in life span and quality of life of a large part of the affected population. Therefore an understanding of mechanisms underlying food overconsumption and obesity development is urgent and essential to find potential treatments. Research investigating mechanisms underlying obesity and the control of food intake has recently experienced a major shift in focus, from the brain's hypothalamus to additional important neural circuits controlling emotion, cognition and motivated behavior. Among them, the mesolimbic system, and the changes in reward and motivated behavior for food, emerge as new promising treatment targets. Furthermore, there is also growing appreciation of the impact of peripheral hormones that signal nutrition status to the mesolimbic areas, and especially the only known circulating orexigenic hormone, ghrelin. This review article provides a synthesis of recent evidence concerning the impact of manipulation of ghrelin and its receptor on models of food reward/food motivation behavior and the mesolimbic circuitry. Particular attention is given to the potential neurocircuitry and neurotransmitter systems downstream of ghrelin's effects on food reward.  相似文献   

16.
Fasting triggers a constellation of physiological and behavioral changes, including increases in peripherally produced ghrelin and centrally produced hypothalamic neuropeptide Y (NPY). Refeeding stimulates food intake in most species; however, hamsters primarily increase foraging and food hoarding with smaller increases in food intake. Fasting-induced increases in foraging and food hoarding in Siberian hamsters are mimicked by peripheral ghrelin, central NPY, and NPY Y1 receptor agonist injections. Because fasting stimulates ghrelin and subsequently NPY synthesis/release, it may be that fasting-induced increased hoarding is mediated by NPY Y1 receptor activation. Therefore, we asked: Can an Y1 receptor antagonist block fasting- or ghrelin-induced increases in foraging, food hoarding, and food intake? This was accomplished by injecting the NPY Y1 receptor antagonist 1229U91 intracerebroventricularly in hamsters fasted, fed, or given peripheral ghrelin injections and housed in a running wheel-based food delivery foraging system coupled with simulated-burrow housing. Three foraging conditions were used: 1) no running wheel access, free food, 2) running wheel access, free food, or 3) foraging requirement (10 revolutions/pellet) for food. Fasting was a more potent stimulator of foraging and food hoarding than ghrelin. Concurrent injections of 1229U91 completely blocked fasting- and ghrelin-induced increased foraging and food intake and attenuated, but did not always completely block, fasting- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the NPY Y1 receptor is important for the effects of ghrelin- and fasting-induced increases in foraging and food intake, but other NPY receptors and/or other neurochemical systems are involved in increases in food hoarding.  相似文献   

17.
Peptide S (NPS or PEPS) and its cognate receptor have been recently identified both in the central nervous system and in the periphery. NPS/PEPS promotes arousal and has potent anxiolytic-like effects when it is injected centrally in mice. In the present experiment, we tested by different approaches its central effects on feeding behaviour in Long-Evans rats. PEPS at doses of 1 and 10 microg injected in the lateral brain ventricle strongly inhibited by more than 50% chow intake in overnight fasted rats with effects of longer duration with the highest dose (P<0.0001). A similar decrease was observed for the spontaneous intake of a high-energy palatable diet (-48%; P<0.0001). This anorexigenic effect was comparable to that induced by corticotropin-releasing hormone in fasted rats at equimolar doses. However, peptide S did not modify food intake stimulated by neuropeptide Y (NPY) at equimolar doses. It also did not affect the fasting concentrations of important modulators of food intake like leptin, ghrelin, and insulin in circulation. This study therefore showed that peptide S is a new potent anorexigenic agent when centrally injected. Its inhibitory action appears to be independent of the NPY, ghrelin, and leptin pathways. Development of peptide S agonists could constitute a new approach for the treatment of obesity.  相似文献   

18.
Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr3ghr ([Dpr(N-octanoyl)3] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH2), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5 mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in trials for clinical purposes.  相似文献   

19.
Ghrelin is an orexigenic hormone that regulates homeostatic and reward-related feeding behavior. Recent evidence indicates that acylation of ghrelin by the gut enzyme ghrelin O-acyl transferase (GOAT) is necessary to render ghrelin maximally active within its target tissues. Here we tested the hypothesis that GOAT activity modulates food motivation and food hedonics using behavioral pharmacology and mutant mice deficient for GOAT and the ghrelin receptor (GHSR). We evaluated operant responding following pharmacological administration of acyl-ghrelin and assessed the necessity of endogenous GOAT activity for operant responding in GOAT and GHSR-null mice. Hedonic-based feeding behavior also was examined in GOAT-KO and GHSR-null mice using a “Dessert Effect” protocol in which the intake of a palatable high fat diet “dessert” was assessed in calorically-sated mice. Pharmacological administration of acyl-ghrelin augmented operant responding; notably, this effect was dependent on intact GHSR signaling. GOAT-KO mice displayed attenuated operant responding and decreased hedonic feeding relative to controls. These behavioral results correlated with decreased expression of the orexin-1 receptor in reward-related brain regions in GOAT-KO mice. In summary, the ability of ghrelin to stimulate food motivation is dependent on intact GHSR signaling and modified by endogenous GOAT activity. Furthermore, GOAT activity is required for hedonic feeding behavior, an effect potentially mediated by forebrain orexin signaling. These data highlight the significance of the GOAT–ghrelin system for the mediation of food motivation and hedonic feeding.  相似文献   

20.
Galanin-like peptide (GALP), discovered in the porcine hypothalamus, is expressed predominantly in the arcuate nucleus (ARC), a feeding-controlling center. Intracerebroventricular injection of GALP has been shown to stimulate food intake in the rats. However, the mechanisms underlying the orexigenic effect of GALP are unknown. The present study aimed to determine the target neurons of GALP in the ARC. We investigated the effects of GALP on cytosolic free Ca2+ concentration ([Ca2+]i) in the neurons isolated from the rat ARC, followed by neurochemical identification of these neurons by immunocytochemistry using antisera against growth hormone-releasing hormone (GHRH), neuropeptide Y (NPY) and proopiomelanocortin (POMC), the peptides localized in the ARC. GALP at 10(-10) M increased [Ca2+]i in 11% of single neurons of the ARC, while ghrelin, an orexigenic and GH-releasing peptide, at 10(-10) M increased [Ca2+]i in 35% of the ARC neurons. Some of these GALP- and/or ghrelin-responsive neurons were proved to contain GHRH. In contrast, NPY- and POMC-containing neurons did not respond to GALP. These results indicate that GALP directly targets GHRH neurons, but not NPY and POMC neurons, and that ghrelin directly targets GHRH neurons in the ARC. The former action may be involved in the orexigenic effect of GALP and the latter in the GH-releasing and/or orexigenic effects ghrelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号