首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Vitamin A-deficient populations have impaired T cell-dependent antibody responses. Dendritic cells (DCs) are the most proficient antigen-presenting cells to naïve T cells. In the mouse, CD11b+ myeloid DCs stimulate T helper (Th) 2 antibody immune responses, while CD8α+ lymphoid DCs stimulate Th1 cell-mediated immune responses. Therefore, we hypothesized that vitamin A-deficient animals would have decreased numbers of myeloid DCs and unaffected numbers of lymphoid DCs. We performed dietary depletion of vitamin A in C57BL/6 J male and female mice and used multicolor flow cytometry to quantify immune cell populations of the spleen, with particular focus on DC subpopulations. We show that vitamin A-depleted animals have increased polymorphonuclear neutrophils, lymphoid DCs, and memory CD8+ T cells and decreased CD4+ T lymphocytes. Therefore, vitamin A deficiency alters splenic DC subpopulations, which may contribute to skewed immune responses of vitamin A-deficient populations.  相似文献   

2.
Macrophage infiltration in obese adipose tissue provokes local inflammation and insulin resistance. Evidence has accumulated that activation of 11beta-HSD1 in adipocytes is critically involved in dysfunction of adipose tissue. However, the potential role of 11beta-HSD1 in macrophages still remains unclear. We here demonstrate that a murine macrophage cell line, J774.1 cells expressed 11beta-HSD1 mRNA and reductase activity, both of which were augmented by lipopolysaccharide (LPS)-induced cell activation. Three kinds of pharmacological inhibition of 11beta-HSD1 in LPS-treated macrophages significantly suppressed the expression and secretion of interleukin 1beta, tumor necrosis factor alpha or monocyte chemoattractant protein 1, thereby highlighting a novel role of 11beta-HSD1 in pro-inflammatory properties of activated macrophages.  相似文献   

3.
Helicobacter pylori causes various gastric diseases, such as gastritis, peptic ulcerations, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Hpn is a histidine-rich protein abundant in this bacterium and forms oligomers in physiologically relevant conditions. In this present study, Hpn oligomers were found to develop amyloid-like fibrils as confirmed by negative stain transition electron microscopy, thioflavin T and Congo red binding assays. The amyloid-like fibrils of Hpn inhibit the proliferation of gastric epithelial AGS cells through cell cycle arrest in the G2/M phase, which may be closely related to the disruption of mitochondrial bioenergetics as reflected by the significant depletion of intracellular ATP levels and the mitochondrial membrane potential. The collective data presented here shed some light on the pathologic mechanisms of H. pylori infections.  相似文献   

4.
Aggregation of the 42-mer amyloid β peptide (Aβ42) plays a pivotal role in the pathogenesis of Alzheimer’s disease. Recent investigations suggested the isomerization and/or racemization of Asp at position 1, 7, or 23 to be associated with the pathological role of Aβ42. Our previous study indicated that the turn at positions 22 and 23 of Aβ42 is closely related to its neurotoxicity through the formation of radicals. To clarify the contribution of these modifications at Asp23 to the pathology, three isomerized and/or racemized Aβ42 mutants were prepared. l-isoAsp23- and d-Asp23-Aβ42 showed moderate aggregative ability similar to the wild type. However, d-Asp23-Aβ42 was less neurotoxic than the wild type, while l-isoAsp23-Aβ42 was as toxic as the wild type. In contrast, d-isoAsp23-Aβ42 showed weak aggregative ability without neurotoxicity. These results suggest the isomerization and/or racemization of Asp23 not to be related to the pathogenesis, but to be a consequence of chemical reactions during the long-term deposition of fibrils.  相似文献   

5.
6.
An increasing body of evidence suggested that intracellular lipid metabolism is dramatically perturbed in various cardiovascular and neurodegenerative diseases with genetic and lifestyle components (e.g., dietary factors). Therefore, a lipidomic approach was also developed to suggest possible mechanisms underlying Alzheimer’s disease (AD). Neural membranes contain several classes of glycerophospholipids (GPs), that not only constitute their backbone but also provide the membrane with a suitable environment, fluidity, and ion permeability. In this review article, we focused our attention on GP and GP-derived lipid mediators suggested to be involved in AD pathology. Degradation of GPs by phospholipase A2 can release two important brain polyunsaturated fatty acids (PUFAs), e.g., arachidonic acid and docosahexaenoic acid, linked together by a delicate equilibrium. Non-enzymatic and enzymatic oxidation of these PUFAs produces several lipid mediators, all closely associated with neuronal pathways involved in AD neurobiology, suggesting that an interplay among lipids occurs in brain tissue. In this complex GP meshwork, the search for a specific modulating enzyme able to shift the metabolic pathway towards a neuroprotective role as well as a better knowledge about how lipid dietary modulation may act to slow the neurodegenerative processes, represent an essential step to delay the onset of AD and its progression. Also, in this way it may be possible to suggest new preventive or therapeutic options that can beneficially modify the course of this devastating disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号