首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal sensitivity is a crucial determinant of insect abundance and distribution. The way it is measured can have a critical influence on the conclusions made. Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important insect pest of cruciferous crops around the world and the thermal responses of polyphagous species are critical to understand the influences of a rapidly changing climate on their distribution and abundance. Experiments were carried out to the lethal temperature limits (ULT0 and LLT0: temperatures where there is no survival) as well as Upper and Lower Lethal Temperature (ULT25 and LLT25) (temperature where 25% DBM survived) of lab-reared adult DBM population to extreme temperatures attained by either two-way ramping (ramping temperatures from baseline to LT25 and ramping back again) or sudden plunging method. In this study the ULT0 for DBM was recorded as 42.6°C and LLT0 was recorded as −16.5°C. DBM had an ULT25 of 41.8°C and LLT25 of −15.2°C. The duration of exposure to extreme temperatures had significant impacts on survival of DBM, with extreme temperatures and/or longer durations contributing to higher lethality. Comparing the two-way ramping temperature treatment to that of direct plunging temperature treatment, our study clearly demonstrated that DBM was more tolerant to temperature in the two-way ramping assay than that of the plunging assay for cold temperatures, but at warmer temperatures survival exhibited no differences between ramping and plunging. These results suggest that DBM will not be put under physiological stress from a rapidly changing climate, rather access to host plants in marginal habitats has enabled them to expand their distribution. Two-way temperature ramping enhances survival of DBM at cold temperatures, and this needs to be examined across a range of taxa and life stages to determine if enhanced survival is widespread incorporating a ramping recovery method.  相似文献   

2.
The sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae), is an invasive exotic pest on Platanus trees in China. This study assessed the thermotolerance of C. ciliata in the laboratory. Detailed experiments were conducted on the effects of high temperature (35, 37, 39, 41, 43, and 45 °C), duration of exposure (0.5, 1, 2, 4, 6, and 8 h), and developmental stage (egg, nymph, and adult) on survival of the bug. Meanwhile, the effects of heat hardening on survival at lethal temperature (exposure to 33, 35, 37, 39, and 41 °C for 1 h prior to transfer to 43 °C for 2 h) were also assessed for nymphs and adults. Survival of eggs, nymphs, and adults was not affected by temperatures between 35 and 39 °C, but declined rapidly with increasing duration of exposure (from 0.5 to 8 h) at temperatures ≥41 °C. The lethal temperature that caused mortality of 50% (Ltemp50) of all developmental stages decreased with increasing duration of exposure from 0.5 to 8 h. The Ltemp50 for nymphs was 44.3, 42.0, and 39.0 °C after 0.5, 2, and 8 h exposure, respectively. Thermotolerance was the highest in eggs, followed by adults and then nymphs. Thermotolerance was slightly greater for adult males than for adult females. The ability of nymphs, females, and males to survive exposure to 43 °C for 2 h significantly increased by heat hardening, i.e., by exposure to a non‐lethal high temperature for 1 h; the optimal heat‐hardening temperature was 37 °C. The results indicate that survival of C. ciliata at heat‐shock temperatures depended on both the temperature and the duration of exposure, and the tolerance to heat shock was enhanced by heat hardening. The thermotolerance of C. ciliata may partially explain why C. ciliata has been rapidly spreading on Platanus trees in southern provinces of China.  相似文献   

3.
The present study scrutinised how far temperature would affect the velocity of the insecticidal activity of Bacillus thuringiensis, as the rapidity of pest control achievements is of a great concern. Third instar Spodoptera littoralis larvae were treated with Bt at three concentration levels under five different temperatures (15°C, 20°C, 25°C, 30°C and 35°C). LT50s were evaluated in each case. The LT50 values showed various levels of reductions as temperature and/or Bt concentration increased, indicating that the velocity of mortality (1/LT50) and/or the rapidity of Bt activity was almost temperature dependant. However, relatively high and low reduction percentages in the LT50 values on the elevation of 5°C were obtained at lower and higher temperature ranges, respectively. The temperature coefficient, Q 10 values, determined within narrow ranges (5°C) showed great reductions when temperature increased from 15°C to 20°C at all Bt concentrations. Raising temperature by 5°C above 20°C or 25°C almost caused similar Q 10 values indicating constant increase in the response of Bt activity within 20–30°C temperature range. Q 10 values over 30°C were comparatively very low. This proved that decrease in Q 10 values due to the rise of temperature was dependant on the starting temperature.  相似文献   

4.
Potato tuber moth (PTM), Phthorimaea operculella (Zeller), (Lepidoptera: Gelechiidae) is an invasive insect pest damaging solanaceous crops. We measured the supercooling point (SCP) and survival at low temperature of different development stages to determine which would be capable of overwintering in the Korean climate and adapting to low temperatures. The SCP ranges from ?23.8°C of the egg to ?16.8 of fourth instar larvae (L4). After short periods of low temperature acclimation in L3 (third instar larva), L4 and prepupae, only the prepupal stage showed a significant lowered SCP from ?20.78 to ?22.37°C. When exposed to different subzero temperature for two hours the egg turned out to be the most cold tolerant stage showing LT50 of ?21.7°C followed by the pupal stage with ?15.89°C. One hundred percent mortality was observed when the larvae or adults were exposed to temperatures below ?15.1°C even for a period as short as 2 h. The results suggest that PTM pupae and egg would be the main overwintering stage in Korea where winter temperature does not drop below ?15°C.  相似文献   

5.
In a series of laboratory experiments, acclimated pupae of Tuta absoluta were exposed to various constant low temperatures in order to estimate their maximum survival times (Kaplan–Meier, Lt99.99). A Weibull function was fitted to the data points, describing maximum survival time as a function of temperature. In another experiment at ?6°C, the progress of mortality increasing with exposure time was identified. These values were fitted by a sigmoidal function converging asymptotically to 100% mortality for very long exposure times. Analysing mortality data from the maximum survival experiment by a generalized linear model showed a significant common slope parameter (p < .001) that reveals parallelism of the survival curves at each temperature if a log time axis is used. These curves appear stretched (time scaled) if plotted with a nonlogarithmic time axis. By combining these mathematical relations, it was possible to calculate a species‐specific ‘mortality surface’ which exhibits mortalities, depending on temperature and duration of exposure. In order to accumulate hourly mortalities for courses of varying temperatures, an algorithm was developed which yields mortality values from that surface taking into account the attained mortality level. In validation experiments, recorded mortalities were compared against modelled mortalities. Prediction of mortality was partially supported by the model, but pupae experiencing intensely fluctuating temperatures showed decreased mortality, probably caused by rapid cold hardening during exposure. Despite this observation, mortality data converged to distinct levels very close to 100% depending on the intensity of temperature fluctuations that were characteristic for different types of experiments. The highest mortality limit occurred at intensely fluctuating temperatures in laboratory experiments. This constituted a benchmark that was not reached under various field conditions. Thus, it was possible to identify temperature limits for the extinction of field populations of Tuta absoluta pupae.  相似文献   

6.
The survival of aphids exposed to low temperatures is strongly influenced by their ability to move within and between plants and to survive exposure to potentially lethal low temperatures. Little is known about the physiological and behavioural limitations on aphid movement at low temperatures or how they may relate to lethal temperature thresholds. These questions are addressed here through an analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a ubiquitous temperate zone pest, Myzus polaris, an arctic species, and Myzus ornatus, a sub-tropical species. Lower lethal temperatures (LLT50) of aphids reared at 15 °C were similar for M. persicae and M. polaris (range: −12.7 to −13.9 °C), but significantly higher for M. ornatus (−6.6 °C). The temperature thresholds for activity and chill coma increased with rearing temperature (10, 15, 20, and 25 °C) for all clones. For M. polaris and M. ornatus the slopes of these relationships were approximately parallel; by contrast, for M. persicae the difference in slopes meant that the difference between the temperatures at which aphids cease walking and enter coma increased by approximately 0.5 °C per 1 °C increase in rearing temperature. The data suggest that all three species have the potential to increase population sizes and expand their ranges if low temperature limitation is relaxed.  相似文献   

7.
低温对沙葱萤叶甲越冬卵存活和发育的影响   总被引:4,自引:0,他引:4  
【目的】沙葱萤叶甲Galeruca daurica(Joannis)是近年来在内蒙古草原暴发成灾的一种新害虫,以卵在牛粪、石块及草丛下越冬,了解其越冬卵的抗寒能力有助于预测其分布范围及种群数量动态。【方法】在室内测定了沙葱萤叶甲越冬卵在不同低温条件下(-18~-39℃)暴露12和24 h及在-30℃低温条件下暴露不同时间(0~60 d)的存活率以及存活卵的发育历期。【结果】低温强度和暴露时间对沙葱萤叶甲越冬卵的存活率有显著影响,随着温度的降低和暴露时间的延长,越冬卵的存活率降低。当温度≤-33℃暴露12 h或≤-30℃暴露24 h,越冬卵存活率显著低于其相应的对照(25℃)。越冬卵低温暴露12和24 h的致死中温度(LT50)分别为-33.08和-32.13℃,在-30℃下的致死中时间(Lt50)为33.33 d。经-36℃低温暴露12 h或≤-33℃低温暴露24 h后,存活的越冬卵发育历期显著延长,而-30℃低温暴露30 d内差异不显著。【结论】沙葱萤叶甲越冬卵抗寒能力强,冬季低温通常不会造成越冬卵的大量死亡。  相似文献   

8.
The general principles in pathogen transmission by insects involve a complex and specific interplay, in this case between thrips, tospovirus and their shared host plant, which has led to outbreaks of crop disease epidemics of economic and social importance. The possible processes and factors driving their co‐evolution were partly studied by rearing Frankliniella occidentalis [western flower thrips (WFT)] on either tomato spotted wilt virus (TSWV)–infected or uninfected Capsicum annum leaflets throughout their larval stages. Later, pupae were transferred individually on healthy leaf discs for further studies of the influence of TSWV on WFT development and behavioural patterns. The exposure of WFT to TSWV was found to improve performance with regard to longevity and survival, with mean longevity being significantly higher in TSWV‐exposed WFT compared to unexposed ones (F(3,403) = 22.44, P < 0.0001). The observed improvement in survival was as a result of significant reduction in mortality for the WFT individuals exposed to TSWV (F(3,383) = 849.94, P < 0.0001) compared to the unexposed. However, the results showed a significant reduction in mean daily fecundity overtime (F10,10) = 246.66, P < 0.0001) and across the four treatments (F(3,30) = 6.62, P = 0.001), as well as lifetime fecundity (F(3,23) = 21.23, P < 0.0001) of the WFT exposed to TSWV compared to the unexposed reared on uninfected leaf discs. For preferential test, C. annum leaf discs infected with TSWV were more attractive to WFT as compared to healthy leaf discs (χ2(4, 34) = 112.35, P < 0.0001). These results are envisaged to contribute to a clear understanding into the plant–vector–virus interaction, which is essential for accurate diagnosis and control of the TSWV epidemic, as well as the control of F. occidentalis as crop pest.  相似文献   

9.
Altered temperatures affect insects’ life history traits, such as development period and fecundity, which ultimately determine population growth rates. Understanding insects’ thermal biology is therefore integral to population forecasting and pest management decision‐making such as when to utilise crop spraying or biological control. Aphids are important crop pests in temperate regions, causing considerable yield losses. The aphid thermal‐biology literature is, however, heavily biased towards the effects of rising mean temperatures, whereas the effects of fluctuating, extreme climatic events (e.g., heat waves and sub‐zero cold periods) are largely overlooked. This study assessed the effects of laboratory‐simulated heat waves and sub‐zero cold periods on the survival, development period, and fecundity of the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae: Microsiphini), in addition to assessing maternal effects on the birth weight and development period of the offspring of exposed individuals. Exposure to heat stress periods (total of 16 h at 30 °C) significantly reduced aphid fecundity and increased physiological development period (in day‐degrees) resulting in a reduced population growth rate. Cold exposure (total of 1.33 h at ?15 °C) reduced population growth rate due to an elongated development period (in days), but did not affect fecundity or physiological development period (in day‐degrees). Both cold and heat stress significantly reduced aphid survival. Maternal experience of heat stress reduced nymphal birth weight although nymphal development period was not affected by either cold or heat stress. The results suggest that including the effects of fluctuating, extreme temperature events on aphid life history in population forecast models is likely to be of great importance to pest management decision‐making. The demonstration of maternal effects on birth weight also suggests that cross‐generational effects of heat waves on population growth rates could occur.  相似文献   

10.
Female CD-1 mice were injected with an LD50 dose of Streptococcus pneumoniae and then exposed to 2.45 GHz (CW) microwave radiation at an incident power density of 10 mW/cm2 (SAR = 6.8 W/kg), 4 h/d for 5 d at ambient temperatures of 19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, 37 °C and 40 °C. Four groups of 25 animals were exposed at each temperature with an equal number of animals concurrently sham-exposed. Survival was observed for a 10-d period after infection. Survival of the sham-exposed animals increased as ambient temperature increased from 19 °C–34 °C. At ambient temperatures at or above 37 °C the heat induced in the body exceeded the thermoregulatory capacity of the animals and deaths from hyperthermia occurred. Survival of the microwave-exposed animals was significantly greater than the shams (~20%) at each ambient temperature below 34 °C. Based on an analysis of the data it appears that the hyperthermia induced by microwave exposure may be more effective in increasing survival in infected mice than hyperthermia produced by conventional methods (ie, high ambient temperature). Microwave radiation may be beneficial to infected animals at low and moderate ambient temperatures, but it is detrimental when combined with high ambient temperatures.  相似文献   

11.
陈浩  方程  许向利  仵均祥 《昆虫学报》2014,57(6):696-702
【目的】梨小食心虫Grapholita molesta (Busck)(鳞翅目:卷蛾科)是一种世界性的害虫,能使蔷薇科的果树严重减产。本研究旨在评估此害虫的耐热性及适应性。【方法】将梨小食心虫成虫暴露在不同温度(36, 38, 40, 42, 44 和46℃)和不同暴露时间(0.5, 1, 2, 4和8 h)下,测定其存活率以及短期高温(38或40℃热驯化1 h)对其热耐受力、寿命、生殖力及卵孵化率的影响。【结果】随着高温暴露时间的延长,梨小食心虫成虫存活率下降。在38或40℃热驯化1 h后,能显著提高梨小食心虫成虫在42℃下2 h的存活率(P<0.05)。在41℃处理1 h,梨小食心虫出现热休克现象,其寿命显著延长,但产卵量显著下降。进一步的试验证明雄虫受高温影响较大,导致与其配对后的雌虫产卵量降低。然而,不论亲代受到怎样的热刺激,其后代的孵化率均不受影响。【结论】结果说明,超过41℃,1 h的高温能对梨小食心虫带来负面影响,但梨小食心虫成虫有适应高温的潜力。  相似文献   

12.
The Andean potato tuber moth, Symmetrischema tangolias (Gyen) [Lepidoptera, Gelechiidae], is an economically important pest of potato (Solanum tuberosum L.) in the mid‐elevated Andean region and an invasive pest of partially global importance. Determination of the pest's population life table parameters is essential for understanding population development and growth under a variety of climates and as part of a pest risk analysis. The development, mortality and reproduction were studied in two pest populations (from Peru and Ecuador) in which cohorts of each life stage were exposed to different constant temperatures ranging from 10°C to 28°C. Using the Insect Life Cycle Modeling software, nonlinear equations were fitted to the data and an overall phenology model established to simulate life table parameters based on temperature. The temperature‐dependent development curve was statistically well described for eggs by Ratkowsky's model and for larvae and pupae by Taylor's model. Variability in development time among individuals independent of temperature was significantly described by a log‐logistic model. Temperature effects on immature mortality were described using different nonlinear models. Optimal temperature for survival was between 14° and 17°C. Temperature effects on adult senescence and oviposition time were described by simple exponential models; within‐group variability was described by a Weibull distribution function. Fecundity per female due to temperature followed a nonlinear model indicating maximum reproduction at ~17°C. The established model revealed good convergence with historical life tables established at fluctuating temperatures. The results confirm that S. tangolias is more adapted to cooler temperature than the common potato tuber moth, Phthorimaea operculella (Zeller). S. tangolias develops at temperatures within the range of 8–28.8°C with a maximum finite rate of population increase (=1.053) at 21°C. The established process‐based physiological model can be used globally to simulate life table parameters for Stangolias based on temperature and should prove helpful for evaluating the potential establishment risk and in adjusting pest management programmes.  相似文献   

13.
The dynamics of cold and heat resistance in a number of coldresistant plant species (potato, meadow fescue, spring and winterwheat) exposed to temperatures from –13 °C to + 50°Chas been studied under controlled environmental conditions.The thermo-resistance of leaves was shown to be constant atcertain temperatures (a range of background temperatures), butit increased (ranges of heat and cold hardening) or decreased(ranges of heat and cold injury) at other temperatures. A gradationof temperatures with respect of ‘thermo-resistance’for these ranges is being proposed. The limits of the rangesvary depending on endogenous (species characteristics, phaseof development) and exogenous factors (environmental conditions).Thus, at gradually rising or falling temperatures the boundariesbetween the ranges of hardening and injury are markedly shiftedtowards more extreme temperatures. Generally, the data showuniformity of responses to extreme temperatures by cold resistantplants; the differences observed between species are quantitative. Key words: Temperature, Cold-resistant plants  相似文献   

14.
Western flower thrips (WFT), Frankliniella occidentalis (Thysanoptera: Thripidae), is the most important insect pest for greenhouse flower crops, but chemical control is often difficult because of the thrips' location in flowers and buds. Thripinema nicklewoodi (Tylenchida: Allantonematidae) is an entomoparasitic nematode that attacks and sterilizes WFT, but its biology and impact on WFT are poorly understood. Methods to propagate and study T. nicklewoodi with a microscope slide arena for observation and a rolled bean leaf arena for rearing were developed. On average, 21.4 nematodes were excreted per day by a parasitized female WFT. The sex ratio of the excreted nematodes was 6.0/1.0 (female/male). After dissection of adult WFT, a maximum of 11 ovoid-shaped first-generation nematodes in a female thrips and 6 in a male thrips were found. There were more second-generation nematodes in the adult female WFT (192.6) than in the adult male WFT (93.7). When 50 healthy first instar WFT were exposed to 4 parasitized female WFT in a rolled bean leaf, a 75.3% mean parasitization rate in the adult stage of the thrips was obtained. In contrast to previous reports, male WFT can be parasitized as readily as females. Parasitism reduced the longevity of both adult female and adult male WFT, and the degree of reduction was higher in adult male WFT. T. nicklewoodi, when presented with various WFT life stages (first instar, second instar, prepupa, pupa, adult female, and adult male), achieved the highest attack rate in first and second instars and prepupa. The free-living nematodes excreted by the hosts actively migrated to a trichome on leaf disks in the observation arena and moved up this structure. Then, the nematode actively waved the anterior part of its body while attaching itself to the trichome with the posterior part of its body. After a nematode contacted the leg of a thrips, the nematode immediately moved up along the leg toward the abdomen of the host. Increased understanding of the biology of T. nicklewoodi is important to better assess its potential for biological control of WFT.  相似文献   

15.
Entomopathogens tend to have a slow speed of kill when used for targeting agricultural insect pests. Relating temperature as a driver of this speed is important to predict pest mortality, and extending this to a degree-day infection model has rarely been studied. Many species of wireworms (Coleoptera: Elateridae), the larvae of click beetles, are subterranean and generalist agricultural pests that can be difficult to control with pesticides. Targeting adult beetles, however, may be an effective method to reduce larval recruitment. Metarhizium brunneum Petch (Hypocreales), an entomopathogenic fungus, kills click beetles but the mortality rate and speed of kill are expected to vary according to temperature. Using a thermal gradient plate to simulate daily oscillating temperatures in Agassiz, British Columbia, Canada, for April, May, and June, the effectiveness of M. brunneum strains LRC112 and F52 in causing mortality to Agriotes obscurus (L.) and Agriotes lineatus (L.) click beetles was studied in the laboratory. Mortality was fastest in beetles exposed to June temperatures and slowest in those exposed to April temperatures, with differences among beetle species × M. brunneum strain combinations. Higher temperatures resulted in more rapid mycelial outgrowth and conidiation in beetle cadavers, with only A. obscurus infected with M. brunneum LRC112 attaining near 100% conidiation. The number of degree days required to kill 50% of the beetles (LDD50) was least for A. obscurus infected with M. brunneum LRC112 (176) followed by A. obscurus × M. brunneum F52 (212), A. lineatus × M. brunneum LRC112 (215), and A. lineatus × M. brunneum F52 (292). Hypothetical calculations showed that M. brunneum exposure earlier in the season resulted in a longer time to kill 50% of the beetles (LT50) but the earliest LT50 calendar date. Later M. brunneum exposure dates resulted in lower LT50's, but later LT50 dates. This conceptual work demonstrates that daily temperature oscillations, seasonality, and degree days must be considered to predict the efficacy and speed of kill of different fungal entomopathogen strains when targeting different click beetle species.  相似文献   

16.
Norway spruce (Picea abies (L.) Karst.) exhibits strong ecotypic variation along altitudinal gradients in morphological traits, e.g. slenderness of crowns or arrangement of second-order branches. We were interested whether montane and lowland morphotypes differ in a key trait for the survival in cold environments, i.e. frost hardiness, and asked: (i) are montane morphotypes more resistant to frost damage and (ii) do they have a lower risk of frost damage by late frosts in spring than lowland morphotypes?We used the electrolyte leakage-method to measure frost hardiness on a monthly basis from October 2006 to May 2007 in stands of the montane and lowland morphotypes at Mt. Brocken in the Harz Mountains, Germany.LT50 (i.e. the temperature that results in 50% of maximum electrolyte leakage) was assessed by freezing treatments in a frost chamber and was significantly influenced by morphotype, month and minimum ambient temperatures. LT50 was significantly lower in the montane than in the lowland morphotype, with −107 °C and −49 °C, respectively. However, the interactions between morphotype with minimum ambient temperature or month were not significant. Thus, as frost hardiness of the two morphotypes responded to temperature in the same way, both morphotypes can be supposed to be exposed to the same risk of frost damage during hardening in autumn and dehardening in spring.  相似文献   

17.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. The larvae live throughout winter in leaf petioles and stems. Winter temperatures might play an important role in survival during winter and hence population dynamics, yet to what degree is unknown. This study investigates the effect of exposure time, cold acclimation, and larval stage on survival at ?5 and ?10 °C. Exposure time at ?5 °C was 1, 2, 4, 8, 12, 16, and 20 days and 6, 12, 24, 36, 48, 72, 96, 120, and 144 h at ?10 °C. Mortality increased with increasing exposure time and was significantly lower for cold‐acclimated larvae. Estimated time until an expected mortality of 50% (LT50) and 90% (LT90) of larvae exposed to ?5 °C was 7.4 and 9.6 days (non‐acclimated) and 11.0 and 15.1 days (acclimated), respectively. Estimated LT50 for non‐acclimated and acclimated larvae exposed to ?10 °C was 32.6 and 70.5 h, respectively, and estimated LT90 66.8 and 132.2 h. Significant differences in mortality between larval stages were observed only at ?5 °C. When exposed to ?5 °C for 8 days, mortality of first and second instars was 81.2 and 51.3%, respectively. When exposed to ?10 °C for 2 days, mortality of first and second instars was 70.5 and 76.1%. Data on winter temperatures in Denmark from 1990 to 2013 showed that larvae were rarely exposed to a number of continuous days at ?5 or ?10 °C causing a potential larval mortality of 50–90%.  相似文献   

18.
Biochemical adaptations allow insects to withstand exposures to hypoxia and/or hypothermia. Exposure to hypoxia may interact either synergistically or antagonistically with standard low temperature stress responses yet this has not been systematically researched and no clear mechanism has been identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced by pre-treatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2 h at 35 °C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold hardening and cross tolerance responses. Given that combined exposure to hypoxia and low temperature is used to sterilize commodities in post-harvest pest management programs, researchers can now exploit these mechanisms involved in cross tolerance to develop more targeted control methods.  相似文献   

19.
We examined the winter survival of age-0 smallmouth bass,Micropterus dolomieu, in lakes at their northern limit of distribution in New Brunswick, Canada. Pre- and post-winter collections over a 3 year period suggested the smallest individuals, <50 mm total length, died during winter under ice. Experiments with wild, age-0 smallmouth bass held in lakes demonstrated a size-dependent survival where smaller individuals had greater survival with an increasing temperature of exposure, but the largest individuals had reduced survival at warmer temperatures. Survivors lost 22–54% of pre-winter energy reserves measured as ash-free dry weight, which was similar to wild individuals captured in spring. Body size at the onset of winter affects survival, but it also appears that temperature interacting with a suite of environmental and biological factors affect changes in energy use and therefore survival of age-0 smallmouth bass under ice in winter.  相似文献   

20.
Abstract Chill‐susceptible insects are able to improve their survival of acute cold exposure over both the short term (i.e. hardening at a relatively severe temperature) and longer term (i.e. acclimation responses at milder temperatures over a longer time frame). However, the mechanistic overlap of these responses is not clear. Four larval stages of four different strains of Drosophila melanogaster are used to test whether low temperature acclimation (10 °C for 48 h) improves the acute cold tolerance (LT90, ~2 h) of larvae, and whether acclimated larvae still show hardening responses after brief exposures to nonlethal cold or heat, or a combination of the two. Acclimation results in increased cold tolerance in three of four strains, with variation among instars. However, if acclimation is followed by hardening pre‐treatments, there is no improvement in acute cold survival. It is concluded that short‐term thermal responses (e.g. hardening) may be of more ecological relevance to short‐lived life stages such as larvae, and that the mechanisms of low temperature hardening and acclimation in D. melanogaster may be antagonistic, rather than complementary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号