首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of Pseudomonas aeruginosa elastase B in activation of the humoral immune response in Galleria mellonella larvae was investigated. The results of our study showed that elastase B injected at a sublethal concentration was responsible for eliciting the humoral immune response in G. mellonella larvae. The insects exhibited increased antibacterial activity, namely, we observed appearance of antimicrobial peptides and a higher level of lysozyme in cell-free hemolymph. Elastase B seems to be a more potent elicitor than thermolysin because similar maximal antibacterial activity levels were observed at a 5-fold lower concentration. We also demonstrated that there were differences in the kinetics of induction of antimicrobial activity between thermolysin and elastase B. The maximum level was observed 18 h post challenge of thermolysin and 38 h after injection of elastase B. It was also shown that, 24 h after elastase injection, the relative levels of apoLp-III in the hemolymph significantly increased in comparison with control G. mellonella larvae. The activation of immune responses in metalloproteinase-challenged larvae involved synthesis of metalloproteinase inhibitors which increased the survival rates of insects both against the lethal dose of thermolysin as well as against viable pathogenic bacterial cells of P. aeruginosa.  相似文献   

3.
Natural infection of Galleria mellonella larvae with the entomopathogenic fungus Beauveria bassiana led to antifungal, but not antibacterial host response. This was manifested by induction of gallerimycin and galiomicin gene expression and, consequently, the appearance of antifungal activity in the hemolymph of the infected larvae. The activity of lysozyme increased at the beginning of infection and dropped while infection progressed. Exposure of the naturally infected animals to 43 °C for 15 min extended their life time.Galleria mellonella larvae were injected with 104, 105 and 106 fungal blastospores, resulting in the appearance of strong antifungal activity and a significant increase in lysozyme activity in larval hemolymph after 24 h. Antibacterial activity was detectable only when 105 and increased when 106 blastospores were injected. The number of the injected B. bassiana blastospores also determined the survival rate of animals. We found that exposure of the larvae to 38 °C for 30 min before infection extended their life time when 103 and 104 spores were injected. The increase in the survival rate of the pre-heat-shocked animals may be explained by higher expression of antimicrobial peptides and higher antifungal and lysozyme activities in their hemolymph in comparison to non-heat-shocked animals.  相似文献   

4.
We have cloned, synthesized, and characterized 11 novel antimicrobial peptides from a skin derived cDNA library of the Chungan torrent frog, Amolops chunganensis. Seven of the 11 antimicrobial peptides were present in authentic A. chunganensis skin secretions. Sequence analysis indicated that the 11 peptides belonged to the temporin, esculentin-2, palustrin-2, brevinin-1, and brevinin-2 families. The peptides displayed potent antimicrobial activities against several strains of microorganisms. One peptide, brevinin-1CG5, demonstrated antimicrobial activity against all tested Gram-positive and Gram-negative bacteria and fungi, and showed high antimicrobial potency (MIC = 0.6 μM) against Gram-positive bacterium Rhodococcus rhodochrous. Some peptides also demonstrated weak hemolytic activity against human erythrocytes in vitro. Phylogenetic analysis based on the amino acid sequences of brevinin-1, brevinin-2, and esculentin-2 peptides from family Ranidae confirmed that the current taxonomic status of A. chunganensis is correct.  相似文献   

5.
Hominicin, antimicrobial peptide displaying potent activity against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 11435 and vancomycin-intermediate S. aureus (VISA) CCARM 3501, was purified by chloroform extraction, ion-exchange column chromatography and reverse-phase HPLC from culture supernatant of Staphylococcushominis MBBL 2-9. Hominicin exhibited heat stability up to 121 °C for 15 min and activity under both acidic and basic conditions (from pH 2.0 to 10.0). Hominicin was cleaved into two fragments after treatment with proteinase K, resulting in the loss of its antibacterial activity, while it was resistant to trypsin, α-chymotrypsin, pepsin and lipase. The molecular mass of hominicin determined by mass spectrometry was 2038.4 Da. LC-mass spectrometry and NMR spectroscopy analyses of the two fragments revealed the sequence of hominicin as DmIle-Dhb-Pro-Ala-Dhb-Pro-Phe-Dhb-Pro-Ala-Ile-Thr-Glu-Ile-Dhb-Ala-Ala-Val-Ile-Ala-Dmp, which had no similarity with other antimicrobial peptides previously reported. The present study is the first report of this novel antimicrobial peptide, which has uncommon amino acid residues like the ones in Class I group and shows potent activity against clinically relevant S. aureus, MRSA and VISA.  相似文献   

6.
Nature has provided inspiration for Drug Discovery studies and amphibian secretions have been used as a promising source of effective peptides which could be explored as novel drug prototypes for neglected parasitic diseases as Leishmaniasis and Chagas disease. In this study, we isolated four antimicrobial peptides (AMPs) from Phyllomedusa nordestina secretion, and studied their effectiveness against Leishmania (L.) infantum and Trypanosoma cruzi. The antiparasitic fractions were characterized by mass spectrometry and Edman degradation, leading to the identification of dermaseptins 1 and 4 and phylloseptins 7 and 8. T. cruzi trypomastigotes were susceptible to peptides, showing IC50 values in the range concentration of 0.25–0.68 μM. Leishmania (L.) infantum showed susceptibility to phylloseptin 7, presenting an IC50 value of 10 μM. Except for phylloseptin 7 which moderate showed cytotoxicity (IC50 = 34 μM), the peptides induced no cellular damage to mammalian cells. The lack of mitochondrial oxidative activity of parasites detected by the MTT assay, suggested that peptides were leishmanicidal and trypanocidal. By using the fluorescent probe SYTOX® Green, dermaseptins 1 and 4 and phylloseptins 7 and 8 showed time-dependent plasma membrane permeabilization of T. cruzi; phylloseptin 7 also showed a similar effect in Leishmania parasites. The present study demonstrates for the first time that AMPs target the plasma membrane of Leishmania and T. cruzi, leading to cellular death. Considering the potential of amphibian peptides against protozoan parasites and the reduced mammalian toxicity, they may contribute as scaffolds for drug design studies.  相似文献   

7.
The venom peptides from the scorpion Heterometrus spinifer have been poorly characterized so far. Here, we identified a novel class of antimicrobial peptides from the venom gland of H. spinifer, which were referred to as HsAp, HsAp2, HsAp3 and HsAp4, respectively. Each of the four peptides consists of 29 amino acid residues, and is cationic and weakly amphipathic. They display no significant homology to any other known peptides, and thus represent a new family of venom peptides from scorpions. Antimicrobial assay showed that HsAp is able to inhibit the growth of both Gram-negative and Gram-positive bacteria with the MIC values of 11.8–51.2 μM. HsAp is also able to inhibit the growth of the tested fungus. Genomic analysis indicated that the genes of all the four peptides are intronless. Our studies expand the families of antimicrobial peptides from scorpions.  相似文献   

8.
The tissue distribution of the predominant hemolymph protein found throughout tick development was examined in the hard tick, Dermacentor variabilis, and in the soft tick, Ornithodoros parkeri. In D. variabilis, the predominant (purified) hemolymph protein was a lipoglycoheme-carrier protein (DvCP) with a molecular weight of 200 K. A protein with a similar mobility on native-PAGE was found in fat body, salivary gland, muscle and ovary from partially fed females which was most abundant in the plasma and salivary gland. DvCP from plasma, salivary gland and fat body of partially fed females consisted of two subunits on SDS-PAGE (98 and 92 K). In replete females, only salivary gland exhibited protein subunits equivalent to hemolymph CP. CP in salivary gland and fat body stained positive for lipids. The concentration of CP in tissues varied between partially fed and replete females, indicating a difference in the expression and/or sequestration of CP during adult development. The predominant hemolymph carrier protein from O. parkeri (OpCP) was purified to homogeneity for the first time and is presumed to have similar functions to CP from D. variabilis. Purified OpCP exhibited a molecular weight of 668 K by native-PAGE. Unlike CP from D. variabilis, OpCP was not detected in fat body or salivary gland tissues but occurred abundantly in coxal fluid. By SDS-PAGE, purified hemolymph OpCP consisted of two major subunits (114 and 93 K) and a less abundant protein with an apparent molecular weight of 48 K. Purified native OpCP was a lipoprotein like DvCP. A spectral analysis of purified OpCP failed to demonstrate the presence of heme like that found for CP from D. variabilis, purified by the same methods. However, plasma from O. parkeri contained heme with a λmax of 410 nm.  相似文献   

9.
Thermotolerance (CTMax) was determined in L. vannamei in three salinities and five acclimation temperatures 20, 23, 26, 29 and 32 °C. In white shrimp, the CTMax was not significantly affected by salinity (P>0.05). A direct relationship was obtained between CTMax and acclimation temperature. The end point of the CTMax in L. vannamei exposed to different combinations of temperature and salinity was defined as the loss of the righting response (LRR). The acclimation response ratio (ARR) for the juveniles of white shrimp ranged from 0.42 to 0.49; values in agreement with other crustaceans from tropical and sub tropical climates. The osmotic pressure of the hemolymph was measured in control organisms and in organisms exposed to CTMax; significant differences were found in organisms maintained in 10 and 40 psu, but there were no significant differences in hemolymph osmotic pressure in those that were acclimated to 26 psu.  相似文献   

10.
Long time geographical isolation of Hainan Island from the China continent has resulted in appearance of many novel frog species. As one of them, Hainan odorous frog, Odorrana hainanensis possesses some special antimicrobial peptides distinct from those found in other Odorrana. In this study, three antimicrobial peptides have been purified and characterized from the skin secretion of O. hainanensis. With the similarity to the temporin family, two peptides are characterized by amidated C-terminals, so they are named as temporin-HN1 (AILTTLANWARKFL-NH2) and temporin-HN2 (NILNTIINLAKKIL-NH2). The third antimicrobial peptide belongs to the brevinin-1 family which is widely distributed in Eurasian ranids, and thus, it is named as brevinin-1HN1 (FLPLIASLAANFVPKIFCKITKKC). Furthermore, after sequencing 68 clones, eight cDNAs encoding antimicrobial peptide precursors were cloned from the skin-derived cDNA library of O. hainanensis. These eight cDNAs can encode seven mature antimicrobial peptides including the above three, as well as brevinin-1V, brevinin-2HS2, odorranain-A6, and odorranain-B1. Twelve different species of microorganisms were chosen, including Gram-positive, Gram-negative and fungi, to test the antimicrobial activities of temporin-HN1, temporin-HN2, brevinin-1HN1, brevinin-1V, and brevinin-2HS2. The result shows that, in addition to their activities against Gram-positive bacteria, temporin-HN1 and temporin-HN2 also possess activities against some Gram-negative bacteria and fungi. However, the two antimicrobial peptides, brevinin-1HN1 and brevinin-1V of the brevinin-1 family have stronger antimicrobial activities than temporin-HN1 and temporin-HN2 of the temporin family. Brevinin-1HN1 possesses activity against Staphylococcus aureus (ATCC25923), Rhodococcus rhodochrous X15, and Slime mould 090223 at the concentration of 1.2 μM.  相似文献   

11.
Sterols impart significant changes to the biophysical properties of lipid bilayers. In this regard the impact of cholesterol on membrane organization and dynamics is particularly well documented and serves for comparison with other sterols. However, the factors underlying the molecular evolution of cholesterol remain enigmatic. To this end, cholesterol attenuates membrane perturbation by the so-called antimicrobial peptides (AMPs), produced ubiquitously by eukaryotic cells to combat bacterial infections by compromising the permeability barrier function of the microbial target membranes. In the present study, we addressed the effects of cholesterol, ergosterol, and lanosterol on the membrane association of two structurally and functionally diverse AMPs viz. LL-37(F27W) and temporin L (TemL) using fluorescence spectroscopy. Interestingly, sterol concentration dependent effects on the membrane association of these peptides were observed. At XSterol = 0.5 cholesterol was most effective in reducing the membrane intercalation of both LL-37(F27W) and TemL, the corresponding efficiencies of the three sterols decreasing as cholesterol > lanosterol ≥ ergosterol, and cholesterol > lanosterol > ergosterol. It is conceivable that part of the selection pressure for the chemical evolution of cholesterol may have derived from the ability to protect the AMP-secreting host cell from the membrane damaging action of the antimicrobial peptides.  相似文献   

12.
Antifungal proteins and peptides, essential compounds for plant defense, have been isolated from several tissues of various plants. These proteins could be used as a natural alternative to control phytopathogenic fungi. In this report a heterodimeric antifungal protein named Pa-AFP1, showing higher identity with the 2S albumin family, was purified by using 70-100% ammonium sulfate saturation and further purification steps such as anionic exchange Q-Sepharose chromatography associated with HPLC reversed-phase C4 chromatography. Analysis by Tricine-SDS-PAGE revealed two peptidic molecular masses of approximately 4500 Da and 7000 Da, in the presence of β-mercaptoethanol, while by removing the reducing agent a single protein with molecular mass of about 11,500 Da was obtained. Moreover, dimer mass was confirmed by MALDI-TOF analyses (11,569.76 Da). The antifungal protein, named Pa-AFP1, efficiently inhibited the growth of filamentous fungi Colletotrichum gloeosporioides, and was added to a short list of 2S albumins with antimicrobial properties. Otherwise, this same peptide showed no activity toward bacteria and yeasts. In summary, this compound could be used in the future to develop biotechnological products for the control of phytopathogenic fungi.  相似文献   

13.
Zhang H  Zhang W  Wang X  Zhou Y  Wang N  Zhou J 《Peptides》2011,32(3):441-446
The presence of an effective immune response in the hemocoel of ticks is crucial for survival, as it prevents the invasion of pathogens throughout the animal's body. Antimicrobial peptides (AMPs) play an important role in this response by rapidly killing invading microorganisms. In this study, a subtraction hybridization cDNA library was constructed from the salivary glands of the unfed and fed female tick Rhipicephalus haemaphysaloides, and a novel cysteine-rich AMP designated Rhamp (R. haemaphysaloides antimicrobial peptide) was isolated and identified. The Rhamp was encoded by a gene with an open reading frame of 303 bp which encoded a mature peptide with 8 kDa molecular weight. No identity was found by BLAST search to any database entries. The sequence encoding the Rhamp was subcloned into the pGEX-4T vector and expressed in Escherichia coli. The recombinant protein of Rhamp showed chymotrypsin and elastase-inhibitory activity and markedly inhibited the growth of Gram-negative bacteria, including Pseudomonas aeruginosa, Salmonella typhimurium, and E. coli. Moreover, the recombinant protein also exerted low hemolytic activity. These results indicate the Rhamp is a novel antimicrobial peptide with proteinase activity from the tick R. haemaphysaloides.  相似文献   

14.
Different species of Leishmania are responsible for cutaneous, mucocutaneous or visceral leishmaniasis infections in millions of people around the world [14]. The adverse reactions caused by antileishmanial drugs, emergence of resistance and lack of a vaccine have motivated the search for new therapeutic options to control this disease. Different sources of antimicrobial molecules are under study as antileishmanial agents, including peptides with antimicrobial and/or immunomodulatory activity, which have been considered to be potentially active against diverse species of Leishmania [7] and [39]. This study evaluated the cytotoxicity on dendritic cells, hemolytic activity, leishmanicidal properties on Leishmania panamensis and Leishmania major promastigotes and effectiveness on parasite intracellular forms (dendritic cells infected with L. panamensis and L. major promastigotes), when each parasite in culture was exposed to different concentrations of a group of synthetic peptides with previously reported antimicrobial properties, which were synthesized based on their naturally occurring reported sequences. Dermaseptin, Pr-2 and Pr-3 showed inhibitory activity on the growth of L. panamensis promastigotes, while Andropin and Cecropin A (with a selectivity index of 4 and 40, respectively) showed specific activity against intracellular forms of this species. The activities of Andropin and Cecropin A were exclusively against the intracellular forms of the parasite, therefore indicating the relevance of these two peptides as potential antileishmanial agents. In the case of L. major promastigotes, Melittin and Dermaseptin showed inhibitory activity, the latter also showed a selectivity index of 8 against intracellular forms. These findings suggest Andropin, Cecropin A and Dermaseptin as potential therapeutic tools to treat New and Old World cutaneous leishmaniasis.  相似文献   

15.
The fraction between 950 and 4000 Da of the venom of Apis mellifera has been analyzed with MALDI-TOF mass spectrometry and statistical facilities of the ClinProTools™ software. Consistent differences in the composition of this venom fraction were observed between queens and workers while younger and older workers (nurses and guards as well as foragers) differ for the relative percentages of two well known cytolytic peptides, namely Melittin and Apamin. Total in situ body methanol extracts and methanol micro-extractions on the cuticle of various parts of the body of drones and females confirmed that venom peptides are smeared on the body surface of females in a not yet clarified way. The observation that venom peptides have been found also on comb wax rises the hypothesis that the use of venom as antimicrobial agent makes part of the social immunity system of A. mellifera.  相似文献   

16.
Tyrothricin, a complex mixture of antibiotic peptides from Bacillus brevis, was reported in 1944 to have antimalarial activity rivalling that of quinine in chickens infected with Plasmodium gallinaceum. We have isolated the major components of tyrothricin, cyclic decapeptides collectively known as the tyrocidines, and tested them against the human malaria parasite Plasmodium falciparum using standard in vitro assays. Although the tyrocidines differ from each other by conservative amino acid substitutions in only three positions, their observed 50% parasite inhibitory concentrations (IC50) spanned three orders of magnitude (0.58 to 360 nM). Activity correlated strictly with increased apparent hydrophobicity and reduced total side-chain surface area and the presence of ornithine and phenylalanine in key positions. In contrast, mammalian cell toxicity and haemolytic activities of the respective peptides were considerably less variable (2.6 to 28 μM). Gramicidin S, a structurally analogous antimicrobial peptide, was less active (IC50 = 1.3 μM) and selective than the tyrocidines. It exerted its parasite inhibition by rapid and selective lysis of infected erythrocytes as judged by fluorescence and light microscopy. The tyrocidines, however, did not cause an overt lysis of infected erythrocytes, but an inhibition of parasite development and life-cycle progression.  相似文献   

17.
Research has demonstrated the need for identifying a novel antimicrobial agent for topical use in the pediatric dental population. The essential oil of Lippia sidoides Cham. (LSO) has been described as having favorable biological properties, and a broad in vitro and in vivo antimicrobial spectrum against bacteria and yeast infections. Our aim was to determine a dose and formulation of LSO, acceptable for clinical testing in a pediatric population with dental caries. Thirty-seven 6-12-year old children were selected to participate in this study, and randomly allocated to receive different concentrations of either a gel (0.8%, 1%, 1.2% and 1.4%) or a mouth rinse (0.6%, 0.8%, 1% and 1.2%) formulation. The highest percentage MS reduction was observed with 0.8% mouth rinse and 1.4% gel. The efficacy of these concentrations was compared with a Thy-Car mixture formulated as a mouth rinse and gel treatments in 11 children. Saliva was collected after a single application of the antimicrobial treatment to establish effectiveness against MS. Both rinse (p < 0.001) and gel (p = 0.02) formulations produced significant MS reduction. Mouth rinse concentrations above 0.8% were associated with a transient intra-oral burning sensation. In conclusion, mouth rinse and gel LSO formulations demonstrated effectiveness against MS and good acceptance among children. We suggest future randomized clinical trials to test its effectiveness against early childhood caries.  相似文献   

18.
Using a combination of reversed-phase HPLC and electrospray mass spectrometry, peptidomic analysis of norepinephrine-stimulated skin secretions of the American bullfrog Lithobates catesbeianus Shaw, 1802 led to the identification and characterization of five newly described peptides (ranatuerin-1CBb, ranatuerin-2CBc, and -CBd, palustrin-2CBa, and temporin-CBf) together with seven peptides previously isolated on the basis of their antimicrobial activity (ranatuerin-1CBa, ranatuerin-2CBa, brevinin-1CBa, and -1CBb, temporin-CBa, -CBb, and -CBd). The abilities of the most abundant of the purified peptides to stimulate the release of insulin from the rat BRIN-BD11 clonal β cell line were evaluated. Ranatuerin-2CBd (GFLDIIKNLGKTFAGHMLDKIRCTIGTCPPSP) was the most potent peptide producing a significant stimulation of insulin release (119% of basal rate, P < 0.01) from BRIN-BD11 cells at a concentration of 30 nM, with a maximum response (236% of basal rate, P < 0.001) at a concentration of 3 μM. Ranatuerin-2CBd did not stimulate release of the cytosolic enzyme, lactate dehydrogenase at concentrations up to 3 μM, indicating that the integrity of the plasma membrane had been preserved. Brevinin-1CBb (FLPFIARLAAKVFPSIICSVTKKC) produced the maximum stimulation of insulin release (285% of basal rate, P < 0.001 at 3 μM) but the peptide was cytotoxic at this concentration.  相似文献   

19.
The crab antimicrobial peptide scygonadin is confirmed to have antimicrobial activity against bacteria and it is probably associated with the reproductive immunity in Scylla paramamosain. To obtain large quantity of scygonadin for further biological assays, a 306 bp cDNA sequence encoding the mature peptide of scygonadin was cloned into a secretion vector of pPIC9K, and a high-level of the recombinant scygonadin was achieved in Pichia pastoris. The optimal expression condition was determined as incubation with 0.5% methanol for 48 h at 28 °C under pH 6.0, and a total of 70 mg scygonadin was expressed in 1 L culture medium. The recombinant product was purified and 97% pure scygonadin was obtained using immobilized metal affinity chromatography with a yield of 46 mg/L. The recombinant scygonadin was confirmed using SDS-PAGE analysis and MS-fingerprinting. P. pastoris-derived scygonadin exhibited relatively higher antimicrobial activities against bacteria than Escherichia coli-derived scygonadin. The antimicrobial activity of the recombinant scygonadin against pathogenic Aeromonas hydrophila showed salt resistant and the killing kinetics of A. hydrophila was time dependent. Besides, the antiviral assay demonstrated that scygonadin could interfere with white spot syndrome virus (WSSV) replication in vitro-cultured crayfish haematopoietic (Hpt) cells. Taken together, this is the first report on the heterologous expression of scygonadin in P. pastoris, and P. pastoris is an effective expression system for producing large quantities of biological active scygonadin for both research and agricultural application.  相似文献   

20.
In this study, we report a novel cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Bh-EGase II) belonging to the glycoside hydrolase family (GHF) 45 from the beetle Batocera horsfieldi. The Bh-EGase II gene spans 720 bp and consists of a single exon coding for 239 amino acid residues. Bh-EGase II showed 93.72% protein sequence identity to Ag-EGase II from the beetle Apriona germari. The GHF 45 catalytic site is conserved in Bh-EGase II. Bh-EGase II has three putative N-glycosylation sites at 56–58 (N–K–S), 99–101 (N–S–T), and 237–239 (N–Y–S), respectively. The cDNA encoding Bh-EGase II was expressed in baculovirus-infected insect BmN cells and Bombyx mori larvae. Recombinant Bh-EGase II from BmN cells and larval hemolymph had an enzymatic activity of approximately 928 U/mg. The enzymatic catalysis of recombinant Bh-EGase II showed the highest activity at 50 °C and pH 6.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号