首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The in vitro effect of temperature on phagocytosis, nitric oxide production and interleukin-1 (IL-1) secretion by splenic phagocytes isolated from the wall lizard (Hemidactylus flaviviridis) demonstrated that changes in temperature altered non-specific defenses. The LPS-induced percentage phagocytosis and phagocytic index were recorded maximum at 25 degrees C. The phagocytic activity declined considerably when the phagocytes were incubated at low (7 and 15 degrees C) or high (37 degrees C) temperatures. The presence of bacterial lipopolysaccharide (LPS) in the incubation medium could considerably enhance the phagocytic activity of splenic phagocytes. A similar temperature-related effect was also observed on LPS-induced cytotoxic activity of phagocytes. LPS could stimulate the nitrite release indicating nitric oxide production only at 25 degrees C. Likewise, the proliferative responses of immature rat's thymocytes to LPS-induced phagocyte-conditioned medium suggest that IL-1 secretion was enhanced when phagocytes were cultured at 25 degrees C. This suggests that 25 degrees C is the optimal temperature for phagocyte functions in H. flaviviridis. The decrease or increase in temperature other than at 25 degrees C dramatically suppressed the phagocyte activities.  相似文献   

2.
Leucine-enkephalin (Leu-enk) is an endogenous opioid peptide and highly conserved throughout the vertebrates. Despite its conserved nature, the immunoregulatory property of Leu-enk is explored only in mammals. The present study describes the immunomodulatory role of Leu-enk in a lower vertebrate, spotted murrel Channa punctatus. Leu-enk increased the percentage phagocytosis and phagocytic index, though its stimulatory effect on phagocytosis markedly decreased at concentrations higher than 10?9 M. Moreover, it had bell-shaped stimulatory effect also on the superoxide production by phagocytes. On the other hand, Leu-enk showed bimodal effects on nitrite release. The lower concentrations of Leu-enk produced inhibitory effect, while higher concentrations had stimulatory effect on nitrite release. Interestingly, the Leu-enk-induced increase in nitrite release was unaltered by non-selective opioid receptor antagonist though the same completely antagonized the inhibitory effect of Leu-enk on nitrite release and the stimulatory effect on phagocytosis and superoxide production. This suggests that the stimulatory effect of Leu-enk on nitrite production is mediated by the non-opioid receptor. Further, δ-opioid receptor was precisely seen involved in mediating the stimulatory effect of Leu-enk on phagocytosis and superoxide production, or inhibitory effect on nitrite release. It can be concluded that Leu-enk regulates the innate immune response of splenic phagocytes acting via both opioid and non-opioid receptor in the fish C. punctatus.  相似文献   

3.

Objective

Adenylyl cyclases (ACs) play important role in regulating pancreatic beta cell growth, survival and secretion through the synthesis of cyclic AMP (cAMP). MDL-12,330A and SQ 22536 are two AC inhibitors used widely to establish the role of ACs. The goal of this study was to examine the effects of MDL-12,330A and SQ 22536 on insulin secretion and underlying mechanisms.

Methods

Patch-clamp recording, Ca2+ fluorescence imaging and radioimmunoassay were used to measure outward K+ currents, action potentials (APs), intracellular Ca2+ ([Ca2+]i) and insulin secretion from rat pancreatic beta cells.

Results

MDL-12,330A (10 µmol/l) potentiated insulin secretion to 1.7 times of control in the presence of 8.3 mmol/l glucose, while SQ 22536 did not show significant effect on insulin secretion. MDL-12,330A prolonged AP durations (APDs) by inhibiting voltage-dependent K+ (KV) channels, leading to an increase in [Ca2+]i levels. It appeared that these effects induced by MDL-12,330A did not result from AC inhibition, since SQ 22536 did not show such effects. Furthermore, inhibition of the downstream effectors of AC/cAMP signaling by PKA inhibitor H89 and Epac inhibitor ESI-09, did not affect KV channels and insulin secretion.

Conclusion

The putative AC inhibitor MDL-12,330A enhances [Ca2+]i and insulin secretion via inhibition of KV channels rather than AC antagonism in beta cells, suggesting that the non-specific effects is needed to be considered for the right interpretation of the experimental results using this agent in the analyses of the role of AC in cell function.  相似文献   

4.
5.
Glucocorticoids (GC) are usually considered to be immunosuppressive and anti-inflammatory. However, recent studies in mammals have demonstrated the diverse effects of GC on non-specific host-defense mechanism, depending on dose or duration of treatment. Hence, in the present study in vitro dose and time-related effects of glucocorticoid, i.e. hydrocortisone (HC) on phagocytosis and nitrite production by LPS-induced splenic macrophages in wall lizard Hemidactylus flaviviridis has been investigated. Hydrocortisone suppressed percentage phagocytosis, phagocytic index and nitrite production by splenic macrophages even at the lowest concentration (10(-13) M) for a short-term exposure (4 h). Hydrocortisone-induced suppression enhanced with the increase of concentration or duration of exposure time. The suppressive effect of hydrocortisone on phagocytic and cytotoxic activities of splenic macrophages was further corroborated since the pre-exposure of macrophages to glucocorticoid-receptor blocker (RU 486) considerably reduced the hydrocortisone-induced suppression of phagocytosis and nitrite production. The present study suggests that GC instead of diverse effects, has dose- and time-dependent immunosuppressive effect on non-specific host-defense immune responses in wall lizard H. flaviviridis.  相似文献   

6.
Brain disturbances, like injuries or aberrant protein deposits, evoke nucleotide release or leakage from cells, leading to microglial chemotaxis and ingestion. Recent studies have identified P2Y12 purinergic receptors as triggers for microglial chemotaxis and P2Y6 receptors as mediators for phagocytosis. However, pinocytosis, known as the internalization of fluid-phase materials, has received much less attention. We found that ATP efficiently triggered pinocytosis in microglia. Pharmacological analysis and knockdown experiments demonstrated the involvement of P2Y4 receptors and the phosphatidylinositol 3-kinase/Akt cascade in the nucleotide-induced pinocytosis. Further evidence indicated that soluble amyloid beta peptide 1-42 induced self-uptake in microglia through pinocytosis, a process involving activation of P2Y4 receptors by autocrine ATP signaling. Our results demonstrate a previously unknown function of ATP as a “drink me” signal for microglia and P2Y4 receptors as a potential therapeutic target for the treatment of Alzheimer''s disease.  相似文献   

7.
Microglia clean up dead cells and debris through phagocytosis in the central nervous system. UDP-activated P2Y6 receptors (P2Y6Rs) induce the formation of phagocytic cup-like structure and P2Y6R expression is increased during the phagocytosis. However, it remains unclear how surface expression of P2Y6R is increased. PICK1 (protein interacting with C-kinase-1) interacts with various neurotransmitter receptors, transporters, and enzymes. We here report that PICK1 might interact with P2Y6R. Surface P2Y6R was reduced in microglia from PICK1-knockout mice and PICK1-knockdown BV2 cells, which was also confirmed by electrophysiological recordings, showing that P2Y6R-mediated current was increased by PICK1 overexpression but was reduced by PICK1-knockdown in BV2 microglia. Finally, PICK1 was sufficient to affect cytoskeletal aggregation and phagocytosis both in primary microglia and BV2 cells. These results indicate that PICK1 is an important regulator of P2Y6R expression and microglial phagocytosis.  相似文献   

8.
Both chemotaxis and phagocytosis depend upon actin-driven cell protrusions and cell membrane remodeling. While chemoattractant receptors rely upon canonical G-protein signaling to activate downstream effectors, whether such signaling pathways affect phagocytosis is contentious. Here, we report that Gαi nucleotide exchange and signaling helps macrophages coordinate the recognition, capture, and engulfment of zymosan bioparticles. We show that zymosan exposure recruits F-actin, Gαi proteins, and Elmo1 to phagocytic cups and early phagosomes. Zymosan triggered an increase in intracellular Ca2+ that was partially sensitive to Gαi nucleotide exchange inhibition and expression of GTP-bound Gαi recruited Elmo1 to the plasma membrane. Reducing GDP-Gαi nucleotide exchange, decreasing Gαi expression, pharmacologically interrupting Gβγ signaling, or reducing Elmo1 expression all impaired phagocytosis, while favoring the duration that Gαi remained GTP bound promoted it. Our studies demonstrate that targeting heterotrimeric G-protein signaling offers opportunities to enhance or retard macrophage engulfment of phagocytic targets such as zymosan.  相似文献   

9.
Cerebellar GABAergic inhibitory transmission between interneurons and Purkinje cells (PCs) undergoes a long-lasting enhancement following different stimulations, such as brief depolarization or activation of purinergic receptors of postsynaptic PCs. The underlying mechanisms, however, are not completely understood. Using a peak-scaled non-stationary fluctuation analysis, we therefore aimed at characterizing changes in the electrophysiological properties of GABAA receptors in PCs of rat cerebellar cortex during depolarization-induced “rebound potentiation (RP)” and purinoceptor-mediated long-term potentiation (PM-LTP), because both RP and PM-LTP likely depend on postsynaptic mechanisms. Stimulation-evoked inhibitory postsynaptic currents (eIPSCs) were recorded from PCs in neonatal rat cerebellar slices. Our analysis showed that postsynaptic membrane depolarization induced RP of eIPSCs in association with significant increase in the number of synaptic GABAA receptors without changing the channel conductance. By contrast, bath application of ATP induced PM-LTP of eIPSCs with a significant increase of the channel conductance of GABAA receptors without affecting the receptor number. Pretreatment with protein kinase A (PKA) inhibitors, H-89 and cAMPS-Rp, completely abolished the PM-LTP. The CaMKII inhibitor KN-62 reported to abolish RP did not alter PM-LTP. These results suggest that the signaling mechanism underlying PM-LTP could involve ATP-induced phosphorylation of synaptic GABAA receptors, thereby resulting in upregulation of the channel conductance by stimulating adenylyl cyclase-PKA signaling cascade, possibly via activation of P2Y11 purinoceptor. Thus, our findings reveal that postsynaptic GABAA receptors at the interneuron-PC inhibitory synapses are under the control of two distinct forms of long-term potentiation linked with different second messenger cascades.  相似文献   

10.
Methamphetamine (METH) is a psychostimulant drug that causes irreversible brain damage leading to several neurological and psychiatric abnormalities, including cognitive deficits. Neuropeptide Y (NPY) is abundant in the mammalian central nervous system (CNS) and has several important functions, being involved in learning and memory processing. It has been demonstrated that METH induces significant alteration in mice striatal NPY, Y1 and Y2 receptor mRNA levels. However, the impact of this drug on the hippocampal NPY system and its consequences remain unknown. Thus, in this study, we investigated the effect of METH intoxication on mouse hippocampal NPY levels, NPY receptors function, and memory performance. Results show that METH increased NPY, Y2 and Y5 receptor mRNA levels, as well as total NPY binding accounted by opposite up‐ and down‐regulation of Y2 and Y1 functional binding, respectively. Moreover, METH‐induced impairment in memory performance and AKT/mammalian target of rapamycin pathway were both prevented by the Y2 receptor antagonist, BIIE0246. These findings demonstrate that METH interferes with the hippocampal NPY system, which seems to be associated with memory failure. Overall, we concluded that Y2 receptors are involved in memory deficits induced by METH intoxication.  相似文献   

11.
Neuropeptide Y (NPY) containing 6 amino acid residues belongs to peptides widely spread in the central and peripheral nervous system. NPY and its receptors play an extremely diverse role in the nervous system, including regulation of satiety, of emotional state, of vascular tone, and of gastrointestinal secretion. In mammals, NPY has been revealed in the majority of sympathetic ganglion neurons, in a high number of neurons of parasympathetic cranial ganglia as well as of intramural ganglia of the metasympathetic nervous system. At present, six types of receptors to NPY (Y1–Y6) have been identified. All receptors to NPY belong to the family of G-bound proteins. Actions of NPY on peripheral organs-targets are predominantly realized through postsynaptic receptors Y1, Y3–Y5, and presynaptic receptors of the Y2 type. NPY is present in large electrondense vesicles and is released at high-frequency stimulation. NPY affects not only vascular tone, frequency and strength of heart contractions, motorics and secretion of the gastrointestinal tract, but also has trophic effect and produces proliferation of cells of organs-targets, specifically of vessels, myocardium, and adipose tissue. In early postnatal ontogenesis the percent of the NPY-containing neurons in ganglia of the autonomic nervous system increases. In senescent organisms, this parameter decreases. This seems to be connected with the trophic NPY effect on cell-targets as well as with regulation of their functional state.  相似文献   

12.
To gain insight for the role of mast cell‐produced heparin in the regulation of epidermal homeostasis and skin pigmentation, we have investigated the effect of heparin on melanosome uptake and proinflammatory responses in normal human epidermal keratinocytes (NHEKs). We quantified phagocytic activity of NHEKs with uptake of melanosomes or fluorescent microspheres. Heparin exhibited the inhibitory effect on keratinocyte phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways. In fact, the heparin‐treated NHEKs showed impaired activation of Akt and ERK during phagocytosis, whereas PI3k and MEK inhibitors significantly suppressed melanosome uptake by NHEKs. In addition, the inflammation marker cycloxygenase‐2 (COX‐2) expression and prostaglandin E2 (PGE2) production were induced during phagocytosis, while these effects were downregulated in the presence of heparin. Our observations suggest that heparin may play an antiphagocytic and anti‐inflammation role in epidermis of human skin.  相似文献   

13.
Abstract

Neuropeptide Y (NPY) recognition by the human neuroblastoma cell lines SiMa, Kelly, SH‐SY5Y, CHP‐234, and MHH‐NB‐11 was analyzed in radioactive binding assays using tritiated NPY. For the cell lines CHP‐234 and MHH‐NB‐11 binding of [3H]propionyl‐NPY was observed with Kd‐values of 0.64 ± 0.07 nM and 0.53 ± 0.12 nM, respectively, determined by saturation analysis with non‐linear regression. The receptor subtype was determined by competition analysis using the subtype selective NPY analogues [Leu31, Pro34]‐NPY (NPY‐Y1, NPY‐Y5), [Ahx5‐24]‐NPY (NPY‐Y2), [Ala31, Aib32]‐NPY (NPY‐Y5), NPY [3‐36] (NPY‐Y2, NPY‐Y5), and NPY [13‐36] (NPY‐Y2). Both cell lines, CHP‐234 and MHH‐NB‐11, the latter one being characterized for NPY receptors for the first time, showed exclusive expression of NPY‐Y2 receptors. In both cell lines binding of NPY induced signal transduction, which was monitored as reduction of forskolin‐induced cAMP production in an ELISA.  相似文献   

14.
To differentiate NPY receptor subtypes, Y1 and Y2, in terms of their impact on feeding behavior, the intact molecule NPY(1–36) and the 3 fragments, NPY(2–36), the Y1 agonist [Leu31,Pro34]NPY, and the Y2 agonist NPY(13–36), were injected (100 pmol/0.3 μl) into the hypothalamic paraventricular nucleus (PVN) of freely feeding rats. A computer-automated data acquisition system was employed in these experiments to permit a detailed analysis of feeding over the 12-h nocturnal cycle, in animals maintained on pure macronutrient diets. The results demonstrate that: 1) NPY(1–36) potentiates feeding behavior, primarily carbohydrate ingestion, by increasing the size and duration of the first meal after injection, rather than by affecting meal number or feeding rate, suggesting that NPY acts through mechanisms of satiety. The potentiation of carbohydrate intake occurs in association with a suppression of protein intake, which is strongest during the second meal after injection and which further increases the proportion of carbohydrate in the diet. No changes in fat ingestion are seen. 2) NPY(2–36), with the N-terminal tyrosine residue deleted, is equally potent to NPY(1–36) in potentiating carbohydrate intake and increasing meal size; however, it is less selective than NPY(1–36), producing an additional, smaller increase in consumption of protein. 3) The stimulatory effect of these peptides on carbohydrate intake and meal size is similarly observed, with somewhat reduced potency, after PVN injection of the selective Y1 agonist [Leu31,Pro34]NPY which, like NPY(1–36), also reduces protein intake. 4) The Y2 receptor agonist, NPY(13–36), causes a decrease in the ingestion of carbohydrate, a smaller decline in protein intake, and a reduction in meal size. It is proposed that hypothalamic Y1 receptors mediate the stimulatory effect of NPY on carbohydrate intake and meal size, while Y2 receptors have the opposite effect of suppressing carbohydrate intake, possibly by altering presynaptic release of monoamines known to influence nutrient ingestion.  相似文献   

15.
Few studies have suggested that neuropeptide Y (NPY) could play an important role in skin functions. However, the expression of NPY, the related peptides, peptide YY (PYY) and pancreatic polypeptide (PP) and their receptors have not been investigated in human skin. Using specific antisera directed against NPY, PYY, PP and the Y1, Y2, Y4 and Y5 receptor subtypes, we investigated here the expression of these markers. NPY-like immunoreactivity (ir) in the epidermal skin could not be detected. For the first time we report the presence of positive PP-like ir immunofluorescent signals in epidermal cells, i.e. keratinocytes of skin from three areas (abdomen, breast and face) obtained as surgical left-overs. The immunofluorescent signal of PP-like ir varies from very low to high level in all three areas. In contrast, PYY-like ir is only expressed in some cells and with varied level of intensity. Furthermore and for the first time we observed specific Y1 and Y4 receptor-like ir in all epidermal layers, while the Y2 and Y5 subtypes were absent. Interestingly, as seen in human epidermis, in Episkin, a reconstituted human epidermal layer, we detected the presence of PP-like as well as Y1-like and Y4-like ir. These data have shown the presence and distribution of PYY, PP and Y1 and Y4 receptors in the human skin and Episkin, suggesting possible novel roles of NPY related peptides and their receptors in skin homeostasis.  相似文献   

16.
Abstract

Using the specific monoiodinated NPY analog [Leu31,Pro34]-NPY we have localized NPY binding sites of the Y1 type in forebrain areas of the rat. The resulting receptor autoradiograms were compared with the regional distribution and cellular localization of the mRNA encoding Y1 receptor as demonstrated by in situ hybridization histochemistry. High densities of Y1 binding sites were present in the cerebral cortex, the claustrum, the thalamus and the medial mammillary nucleus, while moderate densities of Y1 binding sites were observed in the amygdalahippocampal complex. Lower binding densities were observed in septal nuclei, most hypothalamic nuclei and the circumventricular organs. High levels of Y1 mRNA were observed in the granula cell layer of the hippocampal dentate gyrus, several thalamic nuclei and the hypothalamic arcuate nucleus, while moderate levels of Y1 mRNA were seen in the frontoparietal cortex, several thalamic nuclei, the hippocampal pyramidal layers, the subiculum, the olfactory tubercle, the claustrum and a number of hypothalamic nuclei. Using the hypothalamic arcuate nucleus as an example, the distribution of immunoreactive NPY, Y1 mRNA and Y1 binding sites was compared, and possible implications of Y1 mediated actions within this nucleus are discussed. The present study further enlightens the anatomical distribution of NPY binding sites of the Y1 type within the central nervous system of the rat, and extends the understanding of central actions of NPY mediated via this type of receptor.  相似文献   

17.
G protein‐coupled receptors (GPCRs) are a class of membrane proteins that represent a major target for pharmacological developments. However, there is still little knowledge about GPCR structure and dynamics since high‐level expression and characterization of active GPCRs in vitro is extremely complicated. Here, we describe the recombinant expression and functional folding of the human Y2 receptor from inclusion bodies of E. coli cultures. Milligram protein quantities were produced using high density fermentation and isolated in a single step purification with a yield of over 20 mg/L culture. Extensive studies were carried out on in vitro refolding and stabilization of the isolated receptor in detergent solution. The specific binding of the ligand, the 36 residue neuropeptide Y (NPY), to the recombinant Y2 receptors in micellar form was shown by several radioligand affinity assays. In competition experiments, an IC50 value in low nanomolar range could be determined. Further, a KD value of 1.9 nM was determined from a saturation assay, where NPY was titrated to the recombinant Y2 receptors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
The NPY Y1-receptor selective antagonist BIBP3226 exerts a dual control on the cytosolic free calcium concentration ([Ca2+]i) in NPY Y1 receptor- transfected Chinese Hamster Ovary Cells (CHO-Y1 cells). It is a potent inhibitor of the NPY-evoked increase in [Ca2+]i. This can be ascribed to its antagonistic properties for the NPY Y1 receptor since its less active stereoisomer, BIBP3435, is much less potent. However, when its concentration exceeds 1 μM, BIBP3226 produces a large increase in [Ca2+]i on its own. This effect is mimicked by BIBP3435 and it also occurs in wild type CHO-K1 cells. These latter cells do not contain high affinity binding sites for [3H]NPY and [3H]BIBP3226 and, hence, no endogenous NPY Y1 receptors. It is concluded that, at moderately high concentrations, the NPY Y1 receptor antagonist BIBP3226 and its entantiomer BIBP3435 are able to increase the [Ca2+]i in CHO cells either by stimulating another receptor or by directly affecting cellular mechanisms that are involved in calcium homeostasis.  相似文献   

19.
The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.  相似文献   

20.
In the present study, new Schiff’s base derivatives: (Z)-4-amino-5-(2-(3- fluorobenzylidene)hydrazinyl)-4H-1,2,4-triazole-3-thiol (Y1), (Z)-3-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y2), (Z)-2-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y3) and 3-((Z)-(2-(4- (((E)-3-hydroxybenzylidene)amino)-5-mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y4) were synthesized and their structures were characterized by LC-MS, IR and 1H NMR. The inhibitory effects of these compounds on tyrosinase activites were evaluated. Compounds Y1, Y2 and Y3 showed potent inhibitory effects with respective IC50 value of 12.5, 7.0 and 1.5 μM on the diphenolase activities. Moreover, the inhibition mechanisms were determined to be reversible and mixed types. Interactions of the compounds with tyrosinase were further analyzed by fluorescence quenching, copper interaction, and molecular simulation assays. The results together with the anti-tyrosinase activities data indicated that substitution on the second position of benzene ring showed superior ant-ityrosinase activities than that on third position, and that hydroxyl substitutes were better than fluorine substitutes. In addition, two benzene rings connecting to the triazole ring would produce larger steric hindrance, and affect the bonding between tyrosinase and inhibitors to decrease the inhibitory effects. The anti-tyrosinase effects of these compounds were in contrast to their antioxidant activities. In summary, this research will contribute to the development and design of antityrosinase agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号