首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. J. Bostock 《Oecologia》1978,36(1):113-126
Summary The germination responses of seeds of Achillea millefolium L., Artemisia vulgaris L., Cirsium arvense (L.) Scop., Taraxacum officinale Weber, sensu lato, and Tussilago farfara L. to light, nitrate, alternating temperatures, chilling, light quality, and water availability were studied in laboratory tests, using fresh seed and seed stored for 6 months at 27°C and buried in the soil. A factorial experiment with light, nitrate, alternating temperatures, and seed age as factors found that all four affected germination except in T. farfara. All three external factors were stimulatory, especially in combinations. Fresh seed of A. vulgaris and C. arvense showed a light x alternating temperature synergism, responded to chilling, and after-ripened in cold dry storage. That of T. farfara had no dormancy and rapid germination, and germinated well on substrates with a water content too low for the other species. Seed of A. millefolium and A. vulgaris had good survival in both experimental storage conditions, while that of C. arvense and T. officinale did not, and that of T. farfara did not survive. Longevity in both conditions was associated with depth of initial dormancy. The two conditions caused different changes in dormancy in both A. vulgaris and A. millefolium. The germination behaviour, and the size, morphology and dispersal of the seeds of the species are discussed as strategies adapted to intermittently available situations for seedling establishment.  相似文献   

2.
《Acta Oecologica》2006,29(2):187-195
Dahlia coccinea grows on fire-prone xerophilous shrubland, on a lava field located in Mexico City. Two kinds of experiments were performed to test the role of fire and environmental heterogeneity on germination. The first experiment tested the effect of environmental conditions (constant and alternating temperatures, cold stratification and light). The second one tested the effects of fire and high temperatures (dry and moist heat) on germination. Seeds of Dahlia were indifferent to light. The seeds showed physiological dormancy, which was lost by after-ripening or by gibberellins. During simulated fires, dry seeds tolerated high temperatures of short duration and also withstood prolonged exposure to 60 °C. Dry heat treatment reduced the mechanical restriction for embryo growth in dormant seeds. Ash and prolonged exposure to moist heat inhibited germination. Exogenous gibberellins reversed the deleterious effects of prolonged exposure to moist heat. The effect of cold stratification was related to the seeds' physiological stage and to light conditions; stratification in the dark reduced germination. Seeds of D. coccinea could tolerate, evade, or be slightly favored by the effects of low intensity fires occurring in their habitat. Seed responses to treatments suggest that the spatially heterogeneous lava field could provide a wide variety of micro-sites where physiological dormancy could be broken and during fires seeds could maintain their viability and subsequently germinate and/or develop a seed bank.  相似文献   

3.
Salt tolerance of halophytes corresponds with the habitat requirement of the species. It is an important factor during the germination phase and it can determine successful establishment. This paper presents the effects of alternating temperature–light regimes (4/8°C, 10/20°C, 20/32°C; 12 h dark: 12 h light) and different salinity levels (0, 200, 400, 600 mmol l21 NaCl) on seed germination of five halophytes, Halimione pedunculata, Bupleurum tenuissimum, Aster tripolium, Triglochin maritimum and Armeria maritima. The five species differ with respect to family and life‐form and spatially correspond to a decreasing salt gradient (i.e. distance from salt water, with H. pedunculata being the most tolerant and A. maritima being the least). Armeria maritima, A. tripolium and T. maritimum seeds were additionally subjected to a cold stratification experiment. The results showed that Halimione pedunculata, an annual therophyte of year‐round heavily saline habitats, was dormant under all experimental conditions. Bupleurum tenuissimum, a species typical to sites of varying salinity prone to leaching during spring and autumn rainfall, germinated best under cold and warm temperatures, but only under non‐saline conditions. Aster tripolium and T. maritimum, close neighbours in salt marshes, showed very similar germination behaviour: seeds of both species tolerated high levels of salinity and germinated best in summer temperatures during periods of highest soil salinity, and germination was significantly promoted by cold. Armeria maritima, a species usually found on the marginal fringes of saline habitats, germinated only under low salt levels and maximum germination was under cold (spring) and warm (autumn) temperatures, with no significant effect of cold stratification.  相似文献   

4.
《Acta Oecologica》2001,22(1):1-8
Seeds of Drosera anglica collected in Sweden were dormant at maturity in late summer, and dormancy break occurred during cold stratification. Stratified seeds required light for germination, but light had to be given after temperatures were high enough to be favorable for germination. Seeds stratified in darkness at 5/1 °C and incubated in light at 12/12 h daily temperature regimes of 15/6, 20/10 and 25/15 °C germinated slower and to a significantly lower percentage at each temperature regime than those stratified in light and incubated in light. Length of the stratification period required before seeds would germinate to high percentages depended on (1) whether seeds were in light or in darkness during stratification and during the subsequent incubation period, and (2) the temperature regime during incubation. Seeds collected in 1999 germinated to 4, 24 and 92 % in light at 15/6, 20/10 and 25/15 °C, respectively, after 2 weeks of stratification in light. Seeds stratified in light for 18 weeks and incubated in light at 15/6, 20/10 and 25/15 °C germinated to 87, 95 and 100 %, respectively, while those stratified in darkness for 18 weeks and incubated in light germinated to 6, 82 and 91 %, respectively. Seeds collected from the same site in 1998 and 1999, stratified in light at 5/1 °C and incubated in light at 15/6 °C germinated to 22 and 87 %, respectively, indicating year-to-year variation in degree of dormancy. As dormancy break occurred, the minimum temperature for germination decreased. Thus, seed dormancy is broken in nature by cold stratification during winter, and by spring, seeds are capable of germinating at low habitat temperatures, if they are exposed to light.  相似文献   

5.
Seeds of Delphinium fissum subsp. sordidum are physiologically dormant at maturity, with underdeveloped embryos; thus they have morphophysiological dormancy (MPD). The aims of this study were to determine the requirements for embryo growth, dormancy break and germination, to characterise the type of seed dormancy and to evaluate the effects of light, seed age, pollination mechanism, and inter-annual and inter-population variability on germinative ability. After 3 months of incubation at 5°C (cold stratification) in darkness conditions, the mean embryo length increased from 5.6 to 2.07 mm, with 76% of seeds germinating. Conversely, embryos of seeds incubated during 3 months at 20/7 or 28/14°C hardly grew and no germination was recorded. Since cold stratification was the only requirement for the loss of MPD, and both dry storage in laboratory conditions and warm stratification prior to cold stratification shortened the cold stratification period required for germination, it could be concluded that D. fissum subsp. sordidum seeds have intermediate complex MPD. Cold stratification and incubation in darkness conditions promoted higher germination percentages than those in light. In addition, germinative ability increased with seed age up to 8 months (reaching 96% at 5°C in darkness), showed a pronounced inter-annual and inter-population variability, as well as a significant decrease in seeds coming from pollination by geitonogamy. High temperatures (25/10 or 28/14°C) induced seeds to secondary dormancy, so seedling emergence in the greenhouse was restricted to February–March. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter. This study is the first one to document a gradual increase in germination percentage with seed age for plant species with intermediate complex MPD.  相似文献   

6.
Seeds of twoRubus species,R. palmatus var.coptophyllus andR. microphyllus, buried for 7.5 years in soil were subjected to germination tests to investigate their germinability and germination traits. Most of the retrieved seeds were viable, and germinated at the alternating temperatures of 20/30°C in both light and dark. The twoRubus species showed similar responses of germination to temperature and light, although the final percentages of germination were slightly higher inR. palmatus var.coptophyllus. These characteristics of seed dormancy and germination would be involved in the species' utilization of ephemeral habitats created by unpredictable and infrequent disturbances.  相似文献   

7.
Arisaema dracontium (green dragon) is a perennial herb that is widely distributed in eastern North America. However, in Canada, at the northern edge of its distribution, the species is designated as “vulnerable” with respect to conservation status. In natural populations, seedlings are uncommon; the present study was undertaken in order to characterize seed and seedling properties in green dragon. Seeds were sampled from five sites, ranging from Ontario at the northern limit of the distribution range, to Louisiana in the south. Seed germinability ranged from 25 to 55%, depending upon source. Experiments indicated that neither the hard seed coat nor a water-soluble exudate from the seed was responsible for inducing or maintaining dormancy. Patterns of seed germination appear to reflect general climatic conditions at the sites where seeds had originated. Cold stratification at 3°C produced significantly greater relative germinability in all seed collections except the most southerly one, from Baton Rouge. These seeds also had a slower overall speed of germination. In contrast, germination of seeds from the most northerly site was promoted by cold stratification and occurred over a relatively brief period. Germination in alternating light and dark conditions decreased the speed of germination compared to germination in the dark, however exposure to light changed the phenology of germination by promoting development of adventitious roots and primary leaves in these seedlings.  相似文献   

8.
A germination study was carried out on seeds of Clinopodium sandalioticum (Bacch. & Brullo) Bacch. & Brullo ex Peruzzi & Conti (Lamiaceae), a wild aromatic plant endemic to Sardinia. Seeds were incubated at a range of constant (5–25°C) and an alternating temperatures regime (25/10°C), with 12 hours of irradiance per day. The results achieved at 10°C were also compared with those obtained after a period of cold stratification at 5°C for three months. Final seed germination ranged from ca. 28% (5°C) to ca. 72% (25/10°C). A base temperature for germination (Tb) of ca. 5°C and a thermal constant for 50% germination (S) of 89.3°Cd were identified and an optimal temperature for germination (To) was estimated to be comprised between 20 and 25°C. Cold stratification negatively affected seed viability and germination at 10°C. Although a typical “Mediterranean germination syndrome”, could not be detected for C. sandalioticum seeds, these results were coherent with those previously reported for other Mediterranean Lamiaceae species.  相似文献   

9.
Seeds ofTaxus maireiare known for their deep dormancy whichcan only be broken by a procedure involving warm stratificationfollowed by cold stratification. Treatments with alternatingtemperatures of 25/15 or 23/11 °C (12 h light) for 6 monthsfollowed by 5 °C for 3 months were successful in overcomingseed dormancy. After 6 months of warm stratification, cytologicalchanges observed included: enlargement of the embryo; a decreasein the number of lipid bodies; appearance of ER; and increasesin mitochondria, plastids, dictyosomes, vacuoles and microbodiesin the shoot apical meristem. Cold stratification followingthe warm treatment induced cell division, and one or two distinctnucleoli in the shoot apical meristem cells were observed. Bothwarm and cold stratification reduced endogenous ABA concentrationsfrom the original 8888 pg per freshly harvested seed to 392and 536 pg, respectively. Treatment with exogenous gibberellinsafter seeds had been warm-stratified showed that GA4and GA7wereeffective at promoting seed germination, but GA3was not. Theseresults suggest that the strong seed dormancy ofT. maireicouldbe caused by a high ABA content and underdevelopment of theembryos in freshly shed seeds. We conclude that warm stratificationwith alternating temperatures increases the growth of embryosby cell expansion and enlargement and decreases ABA content,but seeds still remain ungerminated. Cold stratification mayinduce the response to GAs and initiate cell division resultingin release from physiological dormancy and subsequent germinationofT. maireiseeds.Copyright 1998 Annals of Botany Company Taxus mairei; ultrastructure; abscisic acid; gibberellin; seed dormancy; stratification; germination.  相似文献   

10.
Aruncus dioicus (Walter) Fernald (Rosaceae) is a perennial herbaceous plant whose young shoots are traditionally collected in the wild and consumed as a food in NE Italy. The aim of this study was to determine the germination requirements of its seeds in order to start its cultivation, and to assess the germination of six accessions of the species. Viability of seeds ranged from 86 to 97% in the various accessions. Germination rate was almost null in seeds of two accessions, and ranged from 10.5 to 37.3 in the other ones. The seed coat was permeable to water. Treatments with GA3, KNO3 and mechanical scarification did not enhance the germination, while the cold stratification treatment at 2 °C for different periods improved the germination rate and the mean germination time as compared with the untreated seeds. With 45 days of cold stratification, the germination rate and mean germination time (respectively, 90.1% and 7.7 dd) of seeds were different from those of the untreated seeds. Cold stratified seeds germinated under artificial light and did not germinate in the dark. Seeds of A. dioicus displayed an intermediate physiological dormancy, removable by a cold stratification treatment, requiring both light and cold conditions.  相似文献   

11.
We tested the hypothesis that seeds of the monocarpic perennial Ferula gummosa from the Mediterranean area and central Asia have deep complex morphophysiological dormancy. We determined the water permeability of seeds, embryo morphology, temperature requirements for embryo growth and seed germination and responses of seeds to warm and cold stratification and to different concentrations of GA3. The embryo has differentiated organs, but it is small (underdeveloped) and must grow inside the seed, reaching a critical embryo length, seed length ratio of 0.65–0.7, before the seed can germinate. Seeds required 9 weeks of cold stratification at <10°C for embryo growth, dormancy break and germination to occur. Thus, seeds have morphophysiological dormancy (MPD). Furthermore, GA3 improved the germination percentage and rate at 5°C and promoted 20 and 5% germination of seeds incubated at 15 and 20°C, respectively. Thus, about 20% of the seeds had intermediate complex MPD. For the other seeds in the seed lot, cold stratification (5°C) was the only requirement for dormancy break and germination and GA3 could not substitute for cold stratification. Thus, about 80% of the seeds had deep complex MPD.  相似文献   

12.
The germination requirements of 19 herbs in the Australian Alps were investigated to determine which species may be sensitive to predicted climate changes. Seeds were subjected to factorial treatments of cold stratification for 0, 4, 8 and 12 weeks, followed by incubation at constant temperatures of 10, 15, 20 and 25 °C and alternating temperatures of 20/5 and 20/10 °C. Germination responses were used to identify stratification‐dependent species, to classify dormancy and to determine optimum conditions for laboratory germination. Ordinal logistic regression was used to determine whether the duration of stratification required for ≥ 50% germination could be predicted by seed weight, seed length, embryo : seed ratio or species distribution (latitudinal range, altitudinal range and maximum altitude). The Kruskal–Wallis test was used to determine any significant differences in stratification requirement between endospermic and non‐endospermic seeds. Species varied considerably in their response to the treatment combinations, and therefore their dormancy class. No significant predictors of stratification requirement were identified by ordinal logistic regression (P > 0.9); however, there was a significant difference in stratification requirement between endospermic and non‐endospermic seeds (P = 0.003). Species with non‐endospermic seeds did not require any stratification to germinate well over a range of temperatures, and appear most likely to remain stable or expand in range in response to climate warming. Conversely, the need for ≥ 8 weeks of cold stratification was associated with the presence of endosperm and either a restricted distribution or upland ecotypes of widely distributed species. Alpine species with endospermic seed and a restricted distribution are most likely to contract in range under climate change and would be appropriate to prioritize for ex situ conservation. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 187–204.  相似文献   

13.

Background and Aims

Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy.

Methods

The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared.

Key Results

Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments.

Conclusions

Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter.Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological dormancy, secondary dormancy, seed germination  相似文献   

14.
Demel Teketay   《Flora》2002,197(1)
The germination responses of Discopodium penninervium were tested at different constant and alternating temperature regimes as well as under various light conditions both in the laboratory and glasshouse. Seeds incubated at 10, 15, 20, 25 and 30 °C failed to germinate. When the seeds were incubated at alternating temperatures of 20/12 °C and 30/12 °C under continuous light, germination was 89 and 61%, indicating that the species requires alternating temperatures as a cue for germination. However, germination declined as the amplitude of alternating temperatures increased from 8 °C and was completely inhibited at an amplitude of 23 °C, suggesting that the optimum amplitude is around 8 °C. Germination was less than 10% in light and nil in darkness at 20 °C in the laboratory. In contrast, seeds incubated at 20/12 °C germinated to 96 and 86% in light and darkness, respectively. Seeds incubated under leaf shade in the glasshouse failed to germinate whereas those incubated under direct daylight and darkness germinated to 44 and 50%, respectively, 30 days after sowing. When seeds incubated under leaf shade and in darkness were exposed afterwards to light, final percent germination was 83% from seeds incubated initially under direct daylight, 79% from those incubated under leaf shade and 86% from those incubated in darkness. The requirement for alternating temperatures and light rich in red:far red ratio to break the dormancy of seeds of D. penninervium could restrict germination to gaps in the vegetation. The results conform with the ecology of the species.  相似文献   

15.
Seed responses to temperature are often essential to the study of germination ecology, but the ecological role of temperature in orchid seed germination remains uncertain. The response of orchid seeds to cold stratification have been studied, but the exact physiological role remains unclear. No studies exist that compare the effects of either cold stratification or temperature on germination among distant populations of the same species. In two separate experiments, the role of temperature (25, 22/11, 27/15, 29/19, 33/24°C) and chilling at 10°C on in vitro seed germination were investigated using distant populations of Calopogon tuberosus var. tuberosus. Cooler temperatures promoted germination of Michigan seeds; warmer temperatures promoted germination of South Carolina and north central Florida seeds. South Florida seed germination was highest under both warm and cool temperatures. More advanced seedling development generally occurred at higher temperatures with the exception of south Florida seedlings, in which the warmest temperature suppressed development. Fluctuating diurnal temperatures were more beneficial for germination compared to constant temperatures. Cold stratification had a positive effect on germination among all populations, but South Carolina seeds required the longest chilling treatments to obtain maximum germination. Results from the cold stratification experiment indicate that a physiological dormancy is present, but the degree of dormancy varies across the species range. The variable responses among populations may indicate ecotypic differentiation.  相似文献   

16.
  • Hypoxic floodwaters can seriously damage seedlings. Seed dormancy could be an effective trait to avoid lethal underwater germination. This research aimed to discover novel adaptive dormancy responses to hypoxic floodwaters in seeds of Echinochloa crus‐galli, a noxious weed from rice fields and lowland croplands.
  • Echinochloa crus‐galli dormant seeds were subjected to a series of sequential treatments. Seeds were: (i) submerged under hypoxic floodwater (simulated with hypoxic flasks) at different temperatures for 15 or 30 days, and germination tested under drained conditions while exposing seeds to dormancy‐breaking signals (alternating temperatures, nitrate (KNO3), light); or (ii) exposed to dormancy‐breaking signals during hypoxic submergence, and germination monitored during incubation and after transfer to drained conditions.
  • Echinochloa crus‐galli seed primary dormancy was attenuated under hypoxic submergence but to a lesser extent than under drained conditions. Hypoxic floodwater did not reinforced dormancy but hindered secondary dormancy induction in warm temperatures. Seeds did not germinate under hypoxic submergence even when subjected to dormancy‐breaking signals; however, these signals broke dormancy in seeds submerged under normoxic water. Seeds submerged in hypoxic water could sense light through phytochrome signals and germinated when normoxic conditions were regained.
  • Hypoxic floodwaters interfere with E. crus‐galli seed seasonal dormancy changes. Dormancy‐breaking signals are overridden during hypoxic floods, drastically decreasing underwater germination. In addition, results indicate that a fraction of E. crus‐galli seeds perceive dormancy‐breaking signals under hypoxic water and germinate immediately after aerobic conditions are regained, a hazardous yet less competitive environment for establishment.
  相似文献   

17.
The effects of stratification temperatures and burial in soil on dormancy levels of Carex pendula L. and C. remota L., two spring-germinating perennials occurring in moist forests, were investigated. Seeds buried for 34 months outdoors, and seeds stratified in the laboratory at temperatures between 3 and 18 °C for periods between 2 and 28 weeks, were tested over a range of temperatures. Seeds of the two species responded similarly to stratification treatments, except for an absolute light requirement in C. pendula. Primary dormancy was alleviated at all stratification temperatures, but low temperatures were more effective than higher ones . (≥ 12 °C). Dormancy induction in non-dormant seeds kept at 5 °C occurred when seeds were subsequently exposed to 18 °C. Dormancy was not induced by a transfer to lower temperatures. Buried seeds of both species exhibited seasonal dormancy cycles with high germination from autumn to spring and low germination during summer. Temperatures at which the processes of dormancy relief and of dormancy induction occurred, overlapped to a high degree. Whether, and when, dormancy changes occurred depended on test conditions. The lower temperature limit for germination (> 10%) was 9 °C in C. remota and 15 °C in C. pendula. Germination ceased abruptly above 36 °C. Germination requirements and dormancy patterns suggest regeneration from seed in late spring and summer at disturbed, open sites (forest gaps) and the capability to form long, persistent seed banks in both species.  相似文献   

18.
Ephemeral wetland vegetation (EWV) in the Mediterranean Basin appears in temporary wetlands where favourable hydrological conditions exist only for a short time and year-to-year variability is high. Here, we report results of the seed germination, dormancy and desiccation tolerance of eight annual species living in this vulnerable habitat. Experiments were performed in laboratory conditions under constant and alternating temperatures and using a 12-h daily photoperiod or continuous darkness. Whilst germination and dormancy differed between the species, seeds demonstrated an absolute light requirement and prefer cool temperatures to germinate (mean ≤15 °C). Logistic regression analysis showed significant effects of alternating temperature in all the species except in Tillaea vaillantii whose germination was stimulated by constant temperature. Mean temperature was a significant term in the logistic models for the dormant species Cicendia filiformis, Linum radiola and T. vaillantii for which after-ripening was an effective dormancy-breaking treatment. From these results we infer three strategies of regeneration by seeds: (1) species germinating during the whole vegetative season (2) species germinating in a narrow temperature niche and (3) species requiring flooding (T. vaillantii). Seeds possessed orthodox storage behaviour (tolerating drying to 15 % relative humidity) and may be amenable to seed banking as a means of ex-situ conservation. We conclude that EWV species are adapted to the irregular presence of water with characteristics that are typical of neither truly aquatic nor wetland plants. These EWV species showed a more plastic germination response based on alternating and constant temperature sensitivity and a low proportion of dormant seeds.  相似文献   

19.
濒危植物秦岭冷杉种子萌发特性的研究   总被引:43,自引:2,他引:43       下载免费PDF全文
 秦岭冷杉(Abies chensiensis)为中国特有种,主要分布于中国秦巴山地,现为渐危种,被列为国家二级保护植物。经测定,秦岭冷杉种子千粒重为(33.92±1.01)g,与其它冷杉属的种子比较,其种子千粒重较大。四唑(TTC,1.0 %)染色测种子生活力的结果表明:有生活力的种子占26.00%,空粒占20.50%,涩粒占33.75%,说明秦岭冷杉种子饱满度很差,反映了比较高的种子败育率;染色结果与对比发芽实验的结果很接近,说明用四唑染色来测定秦岭冷杉种子的生活力是较准确的方法。把种子进行0、14、21、28d低温(4℃)层积处理,发现低温层积可以显著提高种子发芽率和发芽势,但是层积21d与28d发芽势没有差异。设置恒温20℃、25℃和变温20~30℃ 3种温度条件下发芽比较,发现最终的发芽率并没有差异,但是发芽势差异显著,恒温25℃达到最大发芽率的90%的时间要比另外两种温度下提前9d,可见25℃是秦岭冷杉种子发芽的适宜温度。光照(8 h·d-1,100μmol·m-2·s-1)和黑暗下种子的最后发芽率差异不显著,但是光照发芽势高,可见光照可以促进秦岭冷杉种子发芽迅速、整齐。实验证明,用砂床做发芽基质与用纸床做发芽基质相比,前者的发芽率和发芽势均比后者高。  相似文献   

20.
Limonium avei is an annual species occurring in the salt‐marshes and in limited surfaces of rocky areas around the Mediterranean coasts. Seed lots from five populations of this species, along a latitudinal gradient, were analyzed using an image analysis system to detect differences in seed morphology among populations. Germination requirements at constant (5–25°C) and alternating temperatures (25/10°C), both in light and in darkness, were evaluated for all populations, as well as the effect of the calyx removal on final seed germination and its rate. Morpho‐colorimetric analysis clearly identified seeds from different populations, habitats and substrates without misattributions among them. The calyx slowed the germination process, influencing both final germination and rate with respect to naked seeds. Seeds from all populations germinated with significantly higher percentages in the light, with respect to those incubated in the darkness, and showed rapid germination (time in days to reach 50% of germination: 0.5 days) at the warmer tested temperature (25°C). High germination (>80%) was also detected for seeds of all the investigated populations, except for those from the Apulian region (South Italy, ca. 60%). Our results highlight that L. avei has a high variability in seed morphology, probably habitat induced, and a fast germination response for all populations. Rapid germination may be an adaptive strategy that allows L. avei seeds to take advantage of transient favorable conditions during the germination stage, to ensure seedling establishment under the unpredictable rainfall pattern in the Mediterranean climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号