首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemoglobin is an animal protein described as a source of biologically active peptides. Peptic digestion of bovine hemoglobin alpha-chain allowed obtaining peptide fractions with antimicrobial activity. These peptides were purified by reverse-phase High-Performance Liquid Chromatography (HPLC) and characterized by mass spectrometry. The minimal inhibitory concentration and mode of action of these peptides were studied against five bacterial strains including Escherichia coli and Salmonella enteritidis as Gram-negative bacteria and Listeria innocua, Micrococcus luteus and Staphylococcus aureus as Gram-positive bacteria. The action aforementioned peptides were studied on artificial membranes as well. The most active peptides resulted to be the short ones. Consequently, the minimal peptidic sequence necessary for the antibacterial activity was clearly determined: KYR.  相似文献   

2.
We have cloned, synthesized, and characterized 11 novel antimicrobial peptides from a skin derived cDNA library of the Chungan torrent frog, Amolops chunganensis. Seven of the 11 antimicrobial peptides were present in authentic A. chunganensis skin secretions. Sequence analysis indicated that the 11 peptides belonged to the temporin, esculentin-2, palustrin-2, brevinin-1, and brevinin-2 families. The peptides displayed potent antimicrobial activities against several strains of microorganisms. One peptide, brevinin-1CG5, demonstrated antimicrobial activity against all tested Gram-positive and Gram-negative bacteria and fungi, and showed high antimicrobial potency (MIC = 0.6 μM) against Gram-positive bacterium Rhodococcus rhodochrous. Some peptides also demonstrated weak hemolytic activity against human erythrocytes in vitro. Phylogenetic analysis based on the amino acid sequences of brevinin-1, brevinin-2, and esculentin-2 peptides from family Ranidae confirmed that the current taxonomic status of A. chunganensis is correct.  相似文献   

3.

Background

Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs.

Methods

Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR.

Results

TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix.

Conclusion

Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides.

General significance

The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process.  相似文献   

4.
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.  相似文献   

5.
Antimicrobial peptides (AMPs) are important components of the innate immunity. Many antimicrobial peptides have been found from marine mollusks. Little information about AMPs of mollusks living on land is available. A novel cysteine-rich antimicrobial peptide (mytimacin-AF) belonging to the peptide family of mytimacins was purified and characterized from the mucus of the snail of Achatina fulica. Its cDNA was also cloned from the cDNA library. Mytimacin-AF is composed of 80 amino acid residues including 10 cysteines. Mytimacin-AF showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria and the fungus Candida albicans. Among tested microorganisms, it exerted strongest antimicrobial activity against Staphylococcus aureus with a minimal peptide concentration (MIC) of 1.9 μg/ml. Mytimacin-AF had little hemolytic activity against human blood red cells. The current work confirmed the presence of mytimacin-like antimicrobial peptide in land-living mollusks.  相似文献   

6.
Proteolytic digestion of bovine β-lactoglobulin by trypsin yielded four peptide fragments with bactericidal activity. The peptides were isolated and their sequences were found as follows: VAGTWY (residues 15–20), AASDISLLDAQSAPLR (residues 25–40), IPAVFK (residues 78–83) and VLVLDTDYK (residues 92–100). The four peptides were synthesized and found to exert bactericidal effects against the Gram-positive bacteria only. In order to understand the structural requirements for antibacterial activity, the amino acid sequence of the peptide VLVLDTDYK was modified. The replacement of the Asp (98) residue by Arg and the addition of a Lys residue at the C-terminus yielded the peptide VLVLDTRYKK which enlarged the bactericidal activity spectrum to the Gram-negative bacteria Escherichia coli and Bordetella bronchiseptica and significantly reduced the antibacterial capacity of the peptide toward Bacillus subtilis. By data base searches with the sequence VLVLDTRYKK a high homology was found with the peptide VLVATLRYKK (residues 55–64) of human blue-sensitive opsin, the protein of the blue pigment responsible for color vision. A peptide with this sequence was synthesized and assayed for bactericidal activity. VLVATLRYKK was strongly active against all the bacterial strains tested. Our results suggest a possible antimicrobial function of β-lactoglobulin after its partial digestion by endopeptidases of the pancreas and show moreover that small targeted modifications in the sequence of β-lactoglobulin could be useful to increase its antimicrobial function.  相似文献   

7.
Recently, we have found that partially unfolded lysozyme exerts broad spectrum antimicrobial action in vitro against Gram-negative and Gram-positive bacteria independent of its catalytic activity. In parallel, an internal peptide (residues 98-112) of hen egg white lysozyme, obtained after digestion with clostripain, possessed broad spectrum antimicrobial action in vitro. This internal peptide is part of a helix-loop-helix domain (87-114 sequence of hen lysozyme) located at the upper lip of the active site cleft of lysozyme. The helix-loop-helix (HLH) structures are known motifs commonly found in membrane-active and DNA-binding proteins. To evaluate the contribution of the HLH peptide to the antimicrobial properties of lysozyme, the HLH sequence and its secondary structure derivatives of chicken and human lysozyme were synthesized and tested for antimicrobial activity against several bacterial strains. We found that the full HLH peptide of both chicken and human lysozymes was potently microbicidal against both Gram-positive and Gram-negative bacteria and the fungus Candida albicans. The N-terminal helix of HLH was specifically bactericidal to Gram-positive bacteria, whereas the C-terminal helix was bactericidal to all tested strains. Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its C-terminal helix domain kill Gram-negative bacteria by crossing the outer membrane via self-promoted uptake and causing damage to the inner membrane through channel formation. The results are discussed in terms of proposed mechanisms for the catalytically independent antimicrobial activity of lysozyme that offer a new strategy for the design of potential antimicrobial drugs in the treatment of infectious diseases.  相似文献   

8.
A number of research have proven that antimicrobial peptides are of greatest potential as a new class of antibiotics. Antimicrobial peptides and cell-penetrating peptides share some similar structure characteristics. In our study, a new peptide analog, APP (GLARALTRLLRQLTRQLTRA) from the cell-penetrating peptide ppTG20 (GLFRALLRLLRSLWRLLLRA), was identified simultaneously with the antibacterial mechanism of APP against Salmonella typhimurium and Streptococcus pyogenes. APP displayed potent antibacterial activity against Gram-negative and Gram-positive strains. The minimum inhibitory concentration was in the range of 2 to 4 μM. APP displayed higher cell selectivity (about 42-fold increase) as compared to the parent peptide for it decreased hemolytic activity and increased antimicrobial activity. The calcein leakage from egg yolk l-α-phosphatidylcholine (EYPC)/egg yolk l-α-phosphatidyl-dl-glycerol and EYPC/cholesterol vesicles demonstrated that APP exhibited high selectivity. The antibacterial mechanism analysis indicated that APP induced membrane permeabilization in a kinetic manner for membrane lesions allowing O-nitrophenyl-β-d-galactoside uptake into cells and potassium release from APP-treated cells. Flow cytometry analysis demonstrated that APP induced bacterial live cell membrane damage. Circular dichroism, fluorescence spectra, and gel retardation analysis confirmed that APP interacted with DNA and intercalated into the DNA base pairs after penetrating the cell membrane. Cell cycle assay showed that APP affected DNA synthesis in the cell. Our results suggested that peptides derived from the cell-penetrating peptide have the potential for antimicrobial agent development, and APP exerts its antibacterial activity by damaging bacterial cell membranes and binding to bacterial DNA to inhibit cellular functions, ultimately leading to cell death.  相似文献   

9.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

10.
Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.  相似文献   

11.
12.
Antimicrobial peptides (AMPs) provide a potential source of new antimicrobial therapeutics for the treatment of multidrug-resistant pathogens. To develop Gram-negative selective AMPs that can inhibit the effects of lipopolysaccharide (LPS)-induced sepsis, we added various rationally designed LPS-targeting peptides [amino acids 28–34 of lactoferrin (Lf28–34), amino acids 84–99 of bactericidal/permeability increasing protein (BPI84–99), and de novo peptide (Syn)] to the potent AMP, GNU7 (RLLRPLLQLLKQKLR). Compared to our original starting peptide GNU7, hybrid peptides had an 8- to 32-fold improvement in antimicrobial activity against Gram-negative bacteria, such as Escherichia coli and Salmonella typhimurium. Among them, Syn-GNU7 showed the strongest LPS-binding and -neutralizing activities, thus allowing it to selectively eliminate Gram-negative bacteria from within mixed cultures. Our results suggest that LPS-targeting peptides would be useful to increase the antimicrobial activity and selectivity of other AMPs against Gram-negative bacteria.  相似文献   

13.
Temporins are a family of short antimicrobial peptides (8–17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLFamide), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins.  相似文献   

14.
Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of an acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.  相似文献   

15.
Long time geographical isolation of Hainan Island from the China continent has resulted in appearance of many novel frog species. As one of them, Hainan odorous frog, Odorrana hainanensis possesses some special antimicrobial peptides distinct from those found in other Odorrana. In this study, three antimicrobial peptides have been purified and characterized from the skin secretion of O. hainanensis. With the similarity to the temporin family, two peptides are characterized by amidated C-terminals, so they are named as temporin-HN1 (AILTTLANWARKFL-NH2) and temporin-HN2 (NILNTIINLAKKIL-NH2). The third antimicrobial peptide belongs to the brevinin-1 family which is widely distributed in Eurasian ranids, and thus, it is named as brevinin-1HN1 (FLPLIASLAANFVPKIFCKITKKC). Furthermore, after sequencing 68 clones, eight cDNAs encoding antimicrobial peptide precursors were cloned from the skin-derived cDNA library of O. hainanensis. These eight cDNAs can encode seven mature antimicrobial peptides including the above three, as well as brevinin-1V, brevinin-2HS2, odorranain-A6, and odorranain-B1. Twelve different species of microorganisms were chosen, including Gram-positive, Gram-negative and fungi, to test the antimicrobial activities of temporin-HN1, temporin-HN2, brevinin-1HN1, brevinin-1V, and brevinin-2HS2. The result shows that, in addition to their activities against Gram-positive bacteria, temporin-HN1 and temporin-HN2 also possess activities against some Gram-negative bacteria and fungi. However, the two antimicrobial peptides, brevinin-1HN1 and brevinin-1V of the brevinin-1 family have stronger antimicrobial activities than temporin-HN1 and temporin-HN2 of the temporin family. Brevinin-1HN1 possesses activity against Staphylococcus aureus (ATCC25923), Rhodococcus rhodochrous X15, and Slime mould 090223 at the concentration of 1.2 μM.  相似文献   

16.
Hemoglobin is a known source of biologically active peptides with various functions. In the present study, we report for the first time the existence of natural processed hemoglobin fragments exhibiting antimicrobial activity in humans. Two antimicrobial hemoglobin-derived peptides were purified from a human placental peptide library by consecutive chromatographic steps tracking the maximum growth inhibitory activity against Escherichia coli BL21. These peptides, consisting of 17 and 36 amino acid residues, were identified as being C-terminal fragments of gamma-hemoglobin and beta-hemoglobin, respectively. The antimicrobial beta-hemoglobin fragment was also purified from lysed erythrocytes, demonstrating that proteolytic degradation of hemoglobin into small bioactive peptides already starts inside erythrocytes. The identified peptides inhibit the growth of Gram-positive and Gram-negative bacteria and yeasts in micromolar concentrations. Moreover, by LPS-binding, the beta-hemoglobin fragment reduces biological activity of endotoxins. In contrast, even at high concentrations, the identified antimicrobial hemoglobin peptides do not exhibit toxic activity on human primary blood cells. We conclude that antimicrobial hemoglobin-derived peptides could be important effectors of the innate immune response killing microbial invaders.  相似文献   

17.
Five novel antimicrobial peptides (temporin-LK1, rugosin-LK1, rugosin-LK2, gaegurin-LK1, and gaegurin-LK2) are purified and characterized from Kuhl’s wart frog skin secretions, Limnonectes kuhlii. They share obvious similarity to temporin, rugosin, and gaegurin antimicrobial peptide family, respectively. Their amino acid sequences were determined by Edman degradation and mass spectrometry, and further confirmed by cDNA cloning. Nine cDNA sequences encoding precursors of these five purified antimicrobial peptides and other four hypothetical antimicrobial peptides were cloned from the skin cDNA library of L. kuhlii. The deduced precursors are composed of a predicted signal peptide, an acidic spacer peptide, and a mature antimicrobial peptide. Most of them showed strong antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi. The current work identified and characterized three families of antimicrobial peptides from L. kuhlii skins and confirmed that the genus of Limnonectes amphibians share similar antimicrobial peptide families with the genus of Rana amphibians. In addition, a unique antimicrobial peptide (temporin-LK1) with 17 residues including four phenylalanines, which is significantly different from other temporins (16 residues, one or two phenylalanines), was identified in this work. Such unique structure might provide novel template or leading structure to design antimicrobial agents.  相似文献   

18.
Multidrug resistance, which is acquired by both Gram-positive and Gram-negative bacteria, causes infections that are associated with significant morbidity and mortality in many clinical settings around the world. Because of the rapidly increasing incidence of pathogens that have become resistant to all or nearly all available antibiotics, there is a need for a new generation of antimicrobials with a broad therapeutic range for specific applications against infections. Aedesin is a cecropin-like anti-microbial peptide that was recently isolated from dengue virus-infected salivary glands of the Aedes aegypti mosquito. In the present study, we have refined the analysis of its structural characteristics and have determined its antimicrobial effects against a large panel of multidrug resistant bacterial strains, directly isolated from infected patients. Based the results from nuclear magnetic resonance spectroscopy analysis, Aedesin has a helix-bend-helix structure typical for a member of the family of α-helix anti-microbial peptides. Aedesin efficiently killed Gram-negative bacterial strains that display the most worrisome resistance mechanisms encountered in the clinic, including resistance to carbapenems, aminoglycosides, cephalosporins, 4th generation fluoroquinolones, folate inhibitors and monobactams. In contrast, Gram-positive strains were insensitive to the lytic effects of the peptide. The anti-bacterial activity of Aedesin was found to be salt-resistant, indicating that it is active under physiological conditions encountered in body fluids characterized by ionic salt concentrations. In conclusion, because of its strong lytic activity against multidrug resistant Gram-negative bacterial strains displaying all types of clinically relevant resistance mechanisms known today, Aedesin might be an interesting candidate for the development of alternative treatment for infections caused by these types of bacteria.  相似文献   

19.
Many antimicrobial peptides from amphibian skin have been purified and structurally characterized and may be developed as therapeutic agents. Here we describe the antibacterial properties and membrane interaction of chensinin-1, a cationic arginine/histidine-rich antimicrobial peptide, from the skin secretions of Rana chensinensis. The amino acid composition, sequence, and atypical structure of chensinin-1 differ from other known antimicrobial peptides from amphibian skin. Chensinin-1 exhibited selective antimicrobial activity against Gram-positive bacteria, was inactive against Gram-negative bacteria, and had no hemolytic activity on human erythrocytes. The CD spectra for chensinin-1 indicated that the peptide adopted an aperiodic structure in water and a conformational structure with 20?% β-strands, 8?% α-helices, and the remaining majority of random coils in the trifluoroethanol or SDS solutions. Time-kill kinetics against Gram-positive Bacillus cereus demonstrated that chensinin-1 was rapidly bactericidal at 2× MIC and PAE was found to be >5?h. Chensinin-1 caused rapid and large dye leakage from negatively charged model vesicles. Furthermore, membrane permeation assays on intact B. cereus indicated that chensinin-1 induced membrane depolarization in less than 1?min and followed to damage the integrity of the cytoplasmic membrane and resulted in efflux of molecules from cytoplasma. Hence, the primary target of chensinin-1 action was the cytoplasmic membrane of bacteria. Chensinin-1 was unable to overcome bacterial resistance imposed by the lipopolysaccharide leaflet, the major constituent of the outer membrane of Gram-negative bacteria. Lipopolysaccharide induced oligomerization of chensinin-1, thus preventing its translocation across the outer membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号