首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock proteins such as gp96 are immunogenic and are widely used as vaccines in immunotherapy of cancers. The present study focuses on the use of peptide mimotopes as immunotherapeutic vaccines for prostate cancer. To this end, we developed a 15-mer gp96 peptide mimotope specifically reactive to MAT-LyLu gp96–peptide complex using combinatorial single-chain antibody and peptide phage display library. The immunogenicity of the synthesized gp96 mimotope was analyzed initially in normal BALB/c mice in combination with various adjuvants such as complete Freund’s adjuvant (CFA), aluminum salts (ALUM), granulocyte-macrophage colony-stimulating factor (GM-CSF), and liposome, of which CFA served as a positive control. The antibody response was determined and found that the gp96 mimotope with ALUM showed a significant increase in antibody titer, followed by GM-CSF and liposomes. Further, the T cell (CD4+ and CD8+) populations from splenocytes, as well as IgG isotypes, interleukin-4, and interleukin-5 of gp96 mimotope with ALUM-immunized animals, were analyzed. The results suggest that the gp96 mimotope may elicit a potent and effective antitumor antibody response. Further, the study identifies ALUM and GM-CSF as adjuvant options to drive an appropriate protective immune response as these adjuvants have prior use in humans.  相似文献   

2.
There is a constant need to identify novel inhibitors to combat β-lactamase-mediated antibiotic resistance. In this study, we identify three penicillinase-binding peptides, P1 (DHIHRSYRGEFD), P2 (NIYTTPWGSNWS), and P3 (SHSLPASADLRR), using a phage display library. Surface plasmon resonance (SPR) is utilized for quantitative determination and comparison of the binding specificity of selected peptides to penicillinase. An SPR biosensor functionalized with P3-GGGC (SHSLPASADLRRGGGC) is developed for detection of penicillinase with excellent sensitivity (15.8 RU nM−1) and binding affinity (KD = 0.56 nM). To determine if peptides can be good inhibitors for penicillinase, these peptides are mixed with penicillinase and their inhibition efficiency is determined by measuring the hydrolysis of substrate penicillin G using UV–vis spectrophotometry. Peptide P2 (NIYTTPWGSNWS) is found to be a promising penicillinase inhibitor with a Ki of 9.22 μM and a Ki′ of 33.12 μM, suggesting that the inhibition mechanism is a mixed pattern. This peptide inhibitor (P2) can be used as a lead compound to identify more potent small molecule inhibitors for penicillinase. This study offers a potential approach to both detection of β-lactamases and development of novel inhibitors of β-lactamases.  相似文献   

3.
ActRIIB (activin receptor type-2B) is an activin receptor subtype constitutively expressed in the whole body, playing a role in cellular proliferation, differentiation, and metabolism. For its various physiological activities, ActRIIB interacts with activin and multiple other ligands including myostatin (MSTN), growth differentiation factor 11 (GDF11), and bone morphogenetic protein 9 (BMP9). Notably, the protein-protein interaction (PPI) between ActRIIB and MSTN negatively controls muscular development. Therefore, this PPI has been targeted for effective treatment of muscle degenerative diseases such as muscular dystrophy and sarcopenia. Here, we report the identification of ligand-selective peptidic ActRIIB-antagonists by phage display technology. Our peptides bound to the extracellular domain of ActRIIB, inhibited PPIs between ActRIIB expressed on the cell surface and its ligands, and subsequently suppressed activation of Smad that serves as the downstream signal of the ActRIIB pathway. Interestingly, these peptidic antagonists displayed different ligand selectivities; the AR2mini peptide inhibited multiple ligands (activin A, MSTN, GDF11, and BMP9), AR9 inhibited MSTN and GDF11, while AR8 selectively inhibited MSTN. This is the first report of artificial peptidic ActRIIB-antagonists possessing ligand-selectivity.  相似文献   

4.
Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase.  相似文献   

5.
Cytidine triphosphate synthase 1 (CTPS1) is an enzyme expressed in activated lymphocytes that catalyzes the conversion of uridine triphosphate (UTP) to cytidine triphosphate (CTP) with ATP-dependent amination, using either L-glutamine or ammonia as the nitrogen source. Since CTP plays an important role in DNA/RNA synthesis, phospholipid synthesis, and protein sialyation, CTPS1-inhibition is expected to control lymphocyte proliferation and size expansion in inflammatory diseases. In contrast, CTPS2, an isozyme of CTPS1 possessing 74% amino acid sequence homology, is expressed in normal lymphocytes. Thus, CTPS1-selective inhibition is important to avoid undesirable side effects. Here, we report the discovery of CTpep-3: Ac-FRLGLLKAFRRLF-OH from random peptide libraries displayed on T7 phage, which exhibited CTPS1-selective binding with a KD value of 210 nM in SPR analysis and CTPS1-selective inhibition with an IC50 value of 110 nM in the enzyme assay. Furthermore, two fundamentally different approaches, enzyme inhibition assay and HDX-MS, provided the same conclusion that CTpep-3 acts by binding to the amidoligase (ALase) domain on CTPS1. To our knowledge, CTpep-3 is the first CTPS1-selective inhibitor.  相似文献   

6.
The ICAM-1 adhesion molecule is expressed selectively at low levels on endothelial cells but is strongly upregulated in dysfunctional endothelial cells associated with inflammation, cancer, and atherogenesis. Using COS-7 cells transfected with murine ICAM-1 (mICAM-1) as a target receptor, a phage display library was screened. Clones were selected by elution with a mAb specific for a functional epitope of ICAM-1 and a novel peptide sequence binding to the extracellular domain of mICAM-1 was identified that can potentially be used as a targeting vector aimed at dysfunctional endothelium. We further showed that the targeting specificity of the peptide was retained following its incorporation at the N terminal end of a large chimeric protein. Moreover, this chimeric protein containing the mICAM-1-specific sequence was found to inhibit ICAM-1-mediated intercellular adhesion during antigen presentation. Taken together, these results demonstrate the potential for improving the cell-selectivity and properties of therapeutical agents toward targeting adhesion molecules involved in cell-cell interactions.  相似文献   

7.
It has been reported that acidic fibroblast growth factor (aFGF) is expressed in breast cancer and via interactions with fibroblast growth factor receptors (FGFRs) to promote the stage and grade of the disease. Thus, aFGF/FGFRs have been considered essential targets in breast cancer therapy. We identified a specific aFGF-binding peptide (AGNWTPI, named AP8) from a phage display heptapeptide library with aFGF after four rounds of biopanning. The peptide AP8 contained two (TP) amino acids identical and showed high homology to the peptides of the 182–188 (GTPNPTL) site of high-affinity aFGF receptor FGFR1. Functional analyses indicated that AP8 specifically competed with the corresponding phage clone A8 for binding to aFGF. In addition, AP8 could inhibit aFGF-stimulated cell proliferation, arrested the cell cycle at the G0/G1 phase by increasing PA2G4 and suppressing Cyclin D1 and PCNA, and blocked the aFGF-induced activation of Erk1/2 and Akt kinase in both breast cancer cells and vascular endothelial cells. Therefore, these results indicate that peptide AP8, acting as an aFGF antagonist, is a promising therapeutic agent for the treatment of breast cancer.  相似文献   

8.
Patients with prostate cancer (PCa) will eventually progress to castrate-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) treatment. Prostate-specific antigen (PSA)/lo cells which harbor self-renewing long-term tumor-propagating cells that can be enriched using ALDH+CD44+α2β1+ and can initiate tumor development may represent a critical source of CRPC cells. Our purpose was to find a peptide that specifically targets PSA/lo PCa cells to retard the development of CRPC. PSA+ and PSA/lo cells were successfully separated from LNCaP xenograft tumors after prostate- PSAP-GFP vector infection and FACS. A variety of PSA/lo cells specifically targeting peptide (named as “TAP1” targeted affinity peptide 1) was identified by using phage display library screening. The highest binding rate in TAP1 binding cell subpopulations are identified to be among ALDH+CD44+CXCR4+CD24+ cells. TAP1 significantly inhibited PCa growth both in vitro and in vivo. TAP1 significantly improved the anti-proliferation effect of the anti-androgens (Charcoal dextran-stripped serum (CDSS)+Bicalutamide, Enzalutamide) and chemotherapeutic agents (Abiraterone, Docetaxel, Etoposide) in vitro. TAP1 treatment shortens the length of telomeres in ALDH+CD44+CXCR4+CD24+ cells and significantly reduces the expression of Homeobox B9 (HOXB9) and TGF-β2. In conclusion, PSA/lo PCa cell-specific targeting peptide (TAP1) that suppressed PCa cell growth both in vitro and in vivo and improved the drug sensitivities of anti-androgens and chemotherapeutic agents at least through shortening the length of telomere and reducing the expression of HOXB9 and TGF-β2. Therapeutic peptides that specifically target prostate cancer stem cell might be a very valuable and promising approach to overcome chemoresistance and prevent recurrence in patients with PCa.  相似文献   

9.
A monosaccharide-modified β-loop peptide library displayed on phage has been constructed and used for the screening of glycopeptide ligands against a carbohydrate-binding protein. The β-loop peptide library was designed and modified with a mannose derivative on phage. The glycopeptide ligands to concanavalin A (ConA), a mannose-binding protein, were obtained from the mannose-modified peptide phage library. The amino acids neighboring the mannose unit of glycopeptides not only reinforced the binding affinity but also gave diverse binding characteristics.  相似文献   

10.
Phage display technology has been used as a powerful tool in the discovery of ligands specific to receptor(s) on the surface of a cancer cell and could also impact clinical issues including functional diagnosis and cell-specific drug delivery. After three rounds of in vitro panning and two rounds of reverse absorption, a group of phages capable of addressing BEL-7402 enormously were obtained for further analysis. Through a cell-based ELISA, immunofluorescence, FACS, and in vivo binding study, WP05 (sequence TACHQHVRMVRP) was demonstrated to be the most effective peptide in targeting four kinds of liver cancer cell lines (BEL-7402, BEL-7404, SMMC-7721, and HepG2), but not the normal liver cell line HL-7702. In conclusion, the peptide WP05 which was screened by in vitro phage display technology was proved to be a targeting peptide to several common hepatocellular carcinoma cell lines.  相似文献   

11.
Prostate-specific antigen (PSA) is an important marker for the diagnosis and management of prostate cancer. Free PSA has been shown to be more extensively cleaved in sera from benign prostatic hyperplasia patients than in sera from prostate cancer patients. Moreover, the presence of enzymatically activatable PSA was characterized previously in sera from patients with prostate cancer by the use of the specific anti-free PSA monoclonal antibody (mAb) 5D3D11. As an attempt to obtain ligands for the specific recognition of different PSA forms including active PSA, phage-displayed linear and cyclic peptide libraries were screened with PSA coated directly into microplate wells or presented by two different anti-total PSA mAbs. Four different phage clones were selected for their ability to recognize PSA and the inserted peptides were produced as synthetic peptides. These peptides were found to capture and to detect specifically free PSA, even in complex biological media such as sera or tumour cell culture supernatants. Alanine scanning of peptide sequences showed the involvement of aromatic and hydrophobic residues in the interaction of the peptides with PSA whereas Spotscan analysis of overlapping peptides covering the PSA sequence identified a peptide binding to the kallikrein loop at residues 82-87, suggesting that the peptides could recognize a non-clipped form of PSA. Moreover, the PSA-specific peptides enhance the enzymatic activity of PSA immobilized into microplate wells whereas the capture of PSA by the peptides inhibited totally its enzymatic activity while the peptide binding to PSA had no effect in solution. These PSA-specific peptides could be potential tools for the recognition of PSA forms more specifically associated to prostate cancer.  相似文献   

12.
In this study, peptides were selected to recognize staphylococcal enterotoxin B (SEB) which cause food intoxication and can be used as a biological war agent. By using commercial M13 phage library, single plaque isolation of 38 phages was done and binding affinities were investigated with phage-ELISA. The specificities of the selected phage clones showing high affinity to SEB were checked by using different protein molecules which can be found in food samples. Furthermore, the affinities of three selected phage clones were determined by using surface plasmon resonance (SPR) sensors. Sequence analysis was realized for three peptides showing high binding affinity to SEB and WWRPLTPESPPA, MNLHDYHRLFWY, and QHPQINQTLYRM amino acid sequences were obtained. The peptide sequence with highest affinity to SEB was synthesized with solid phase peptide synthesis technique and thermodynamic constants of the peptide-SEB interaction were determined by using isothermal titration calorimetry (ITC) and compared with those of antibody-SEB interaction. The binding constant of the peptide was determined as 4.2 ± 0.7 × 105 M−1 which indicates a strong binding close to that of antibody.  相似文献   

13.
利用抗体捕获法,经三轮淘洗,从表面展示随机肽序列的噬菌体文库中筛选到与衣原体单克隆抗体C17特异结合的噬菌体克隆,其一致序列为:(L/I)PGGS(P/W),竞争抑制实验表明含特异序列的克隆能与天然抗原竞争。据此,我们认为此序列为衣原体的B细胞抗原表位。  相似文献   

14.
The bidentate metal binding amino acid bipyridylalanine (BpyAla) was incorporated into a disulfide linked cyclic peptide phage displayed library to identify metal ion binding peptides. Selection against Ni2+–nitrilotriacetic acid (NTA) enriched for sequences containing histidine and BpyAla. BpyAla predominated when selections were carried out at lower pH, consistent with the differential pKa’s of histidine and BpyAla. Two peptides containing BpyAla were synthesized and found to bind Ni2+ with low micromolar dissociation constants. Incorporation of BpyAla and other metal binding amino acids into peptide and protein libraries should enable the evolution of novel binding and catalytic activities.  相似文献   

15.
Clostridial neurotoxins are the most powerful toxins known. There are no available antidotes to neutralize neurotoxins after they have been internalized by neuronal cells. Enzymatic domains of clostridial neurotoxins are zinc-endopeptidases specific for protein components of the neuroexocytosis apparatus. Thus, attempts were made to find such antidotes among molecules possessing chelating properties. Subsequently, it was proposed that the process of interaction between clostridial neurotoxins and their substrates might be more complex than viewed previously and may include several separate regions of interaction. Phage display technology is free from bias toward any particular model. This technology in combination with recombinantly produced light chains of botulinum neurotoxins serotypes A, B, and C was used to identify potential inhibitors of clostridial neurotoxins. Identified sequences did not show substantial similarity with substrate proteins of clostridial neurotoxins. Nevertheless, three peptides chosen for further analysis were able to inhibit enzymatic activity of all clostridial neurotoxins tested. This work demonstrates that at least one of these peptides could not be cleaved by clostridial neurotoxin. Attempts to delete amino acid residues from this peptide resulted in dramatic loss of its inhibitory activity. Finally, this work presents a novel approach to searching for inhibitors of clostridial neurotoxins.  相似文献   

16.
目的:通过噬菌体展示技术筛选得到与FGFR结合的bFGF模拟短肽,为bFGF肽类抑制剂的研发提供实验基础。方法:以Balb/c 3T3细胞为靶标,以COS-7细胞作消减,对噬菌体随机七肽库进行4轮生物淘洗,再采用ELISA检测单克隆噬菌体对Balb/c 3T3亲和性和特异性,选取阳性克隆进行DNA测序分析。结果:从富集的噬菌体中获得12个阳性克隆,获得一组疏水性七肽及共同基序PR。结论:利用肽类新药开发的重要工具--噬菌体展示技术,得到2段bFGF的受体结合模拟肽,可望作为bFGF抑制剂的先导肽。  相似文献   

17.
Microbial transglutaminase (TGase) from Streptomyces mobaraensis (MTG) has been used in many industrial applications because it effectively catalyzes the formation of covalent cross-linking between glutamine residues in various substrate proteins and lysine residues or primary amines. To better understand the sequence preference around the reactive glutamine residue by this enzymatic reaction, we screened preferred peptide sequences using a phage-displayed random peptide library. Most of the peptides identified contained a consensus sequence, which was different from those previously found for mammalian TGases. Of these, most sequences had a specific reactivity toward MTG when produced as a fusion protein with glutathione-S-transferase. Furthermore, the representative sequence was found to be reactive even in the peptide form. The amino acid residues in the sequence critical for the reactivity were further analyzed, and the possible interaction with the enzyme has been discussed in this paper.  相似文献   

18.
INTR0DUCTI0NIn0urprevi0usstudy0fV5andVKfromfouranti-TCSIgEhybrid0masestab-lishedin0urlaboratory,wefoundVKfr0mallfourcl0nesusedfragmentsfromthesamegermlinegenefamilyVK21,andabiasintheuse0fJk1genefragmentwasalsoobserved.Ontheotherhand,thegeneusageofVHwaJsquitediverse.WespeculatedthatinIgEresponsest0TCS,thelightchainmayplayam0reimpor-tantroleinspecificbindingtoallergenicdeterminant0nTCS[1].However,duet0thelimitationofhybrid0matechnology,itisdifficulttoachievealargenumberofanti-TCSI…  相似文献   

19.
Despite tremendous advances in cancer treatment and survival rates, pancreatic cancer remains one of the most deadly afflictions and the fourth leading cause of cancer deaths in the world. Matrix Metalloproteinases (MMPs) are thought to be involved in cancer progression. Matrix metalloproteinase (MMP)-2 is known to play a pivotal role in tumor invasion, metastasis and angiogenesis, and validated to be the anticancer target. Inhibition of MMP-2 activity is able to reduce the cancer cell invasion and suppress tumor growth in vivo. Two novel peptides, M204C4 and M205C4, which could specially inhibit MMP-2 activity, were identified by a phage display library screening. We showed that M204C4 and M205C4 inhibited the activity of MMP-2 in a dose dependent manner in vitro. Two peptides reduced MMP-2 mediated invasion of the pancreatic cancer cell lines PANC-1 and CFPAC-1, but not affected the expression and release of MMP-2. Furthermore, these two peptides could suppress tumor growth in vivo. Our results indicated that two peptides selected by phase display technology may be used as anticancer drugs in the future.  相似文献   

20.
Campbell G. Nicol 《FEBS letters》2009,583(12):2100-7159
We performed in vivo phage display in the stroke prone spontaneously hypertensive rat, a cardiovascular disease model, and the normotensive Wistar Kyoto rat to identify cardiac targeting peptides, and then assessed each in the context of viral gene delivery. We identified both common and strain-selective peptides, potentially indicating ubiquitous markers and those found selectively in dysfunctional microvasculature of the heart. We show the utility of the peptide, DDTRHWG, for targeted gene delivery in human cells and rats in vivo when cloned into the fiber protein of subgroup D adenovirus 19p. This study therefore identifies cardiac targeting peptides by in vivo phage display and the potential of a candidate peptide for vector targeting strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号