首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细菌在生存过程中要面对复杂多样的环境,在长期进化过程中,细菌逐渐形成不同的应答机制来感应环境信号的变化,并通过精确的基因表达来调控生理生化反应。基因表达调控可分为转录水平和转录后水平两个方面,对于细菌来说,非编码RNA在转录后调控上发挥着重要的作用,而大多数非编码RNA与靶标m RNA的相互作用过程又离不开Hfq蛋白的辅助。本文综述了非编码RNA的分类、调控特点,伴侣蛋白Hfq的结构、功能以及两者相互作用的机制,以期深入了解非编码RNA及其伴侣蛋白Hfq在转录后调控中发挥的作用。  相似文献   

2.
We isolated and characterized a novel small RNA from Bacillus subtilis. We termed this molecule BS203 RNA from the length of its mature form (203 nt) and located the corresponding gene at the yocI-yocJ intergenic region on the B. subtilis genome. Northern blotting revealed that it is transcribed in vegetative growing cells and that the amount of BS203 RNA decreased in the middle of the vegetative phase. A computer-aided prediction of the BS203 RNA secondary structure revealed three characteristic stem-loop structures. Despite active expression during the vegetative phase, growth of the knockout mutant was not affected by depletion of BS203 RNA. A phylogenetic comparison of the sequence of the BS203 RNA with other Bacillus species including B. cereus and B. halodurans C-125, or Clostridium perfringens suggests that the sequence is unique to Bacillus subtilis.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Many RNA-binding proteins help RNAs to fold via their RNA chaperone activity. This term has been used widely without accounting for the diversity of the observed reactions, which include complex events like restructuring of misfolded catalytic RNAs, promoting the assembly of RNA-protein complexes, and mediating RNA-RNA interactions. Proteins display very diverse activities depending on the assays used to measure RNA chaperone activity. To classify proteins with this activity, we compared three exemplary proteins from E. coli, host factor Hfq, ribosomal protein S1, and the histone-like protein StpA for their abilities to promote two simple reactions, RNA annealing and strand displacement. The results of a FRET-based assay show that S1 promotes only RNA strand displacement while Hfq solely enhances RNA annealing. StpA, in contrast, is active in both reactions. To test whether the two activities can be assigned to different domains of the bipartite-structured StpA, we assayed the purified N- and C- terminal domains separately. While both domains are unable to promote RNA annealing, we can attribute the RNA strand displacement activity of StpA to the C-terminal domain. Correlating with their RNA annealing activities, only Hfq and full-length StpA display simultaneous binding of two RNAs, suggesting a matchmaker-like model for this activity. For StpA, this "RNA crowding" requires protein-protein interactions, since a dimerization-deficient StpA mutant lost the ability to bind and anneal two RNAs. These results underline the difference between the two reaction types, making it necessary to distinguish and classify proteins according to their specific RNA chaperone activities.  相似文献   

10.
11.
Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA–mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5ʹ untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.  相似文献   

12.
Abstract RNAIII, an RNA molecule shown to encode δ-hemolysin and independently to regulate toxin synthesis in Staphylococcus aureus , is transcribed at the mid-exponential phase of growth, while its target genes are activated 2 h later, at the post-exponential phase of growth. We show here that the translation of RNAIII to the 26-amino acid peptide δ-hemolysin is delayed by 1 h, and that this delay is abolished when the 3'-end of this molecule is deleted. We suggest that structural changes of RNAIII to a translatable form of the molecule precede its regulation of target gene expression.  相似文献   

13.
RNA结合蛋白(RNA-Binding Protein)Hfq是一种重要的细菌转录后调节因子,之前对Hfq的研究大多集中在该蛋白对小分子非编码RNA(Small Non-Coding RNA,sRNA)和mRNA的作用上.Hfq最典型的功能是促进sRNA与其靶标mRNA碱基配对,在转录后介导对RNA的稳定性和翻译的调控...  相似文献   

14.
《Cell reports》2020,30(9):3127-3138.e6
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
  1. Download : Download high-res image (115KB)
  2. Download : Download full-size image
  相似文献   

17.
Bacteria localize proteins and DNA regions to specific subcellular sites, and several recent publications show that RNAs are localized within the cell as well. Localization of tmRNA and some mRNAs indicates that RNAs can be sequestered at specific sites by RNA binding proteins, or can be trapped at the location where they are transcribed. Although the functions of RNA localization are not yet completely understood, it appears that one function of RNA localization is to regulate RNA abundance by controlling access to nucleases. New techniques for visualizing RNAs will likely lead to increased examination of spatial control of RNAs and the role this control plays in the regulation of gene expression and bacterial physiology.  相似文献   

18.
RNA降解体(细菌RNA降解的主要执行者)是一种多亚基的蛋白质复合物,主要由RNA解螺旋酶、聚核苷酸磷酸化酶(polynucleotide phosphorylase,PNPase)、内切核酸酶(ribonuclease E,RNase E)以及糖酵解途径中的烯醇化酶、磷酸果糖激酶等组成,参与核糖体RNA(ribosome RNA,rRNA)的加工以及信使RNA(messenger RNA,mRNA)的降解。此外,RNA分子伴侣Hfq和调控小RNA(small RNA,sRNA)在RNA稳定性调控中也发挥着重要作用。综述了细菌RNA稳定性调控相关功能元件,特别是降解体蛋白及RNA分子伴侣Hfq的最新进展,以期为研究细菌RNA稳定性及其参与的代谢调控提供理论参考。  相似文献   

19.
The RNA chaperone Hfq is a key regulator of the function of small RNAs (sRNAs). Hfq has been shown to facilitate sRNAs binding to target mRNAs and to directly regulate translation through the action of sRNAs. Here, we present evidence that Hfq acts as the repressor of cirA mRNA translation in the absence of sRNA. Hfq binding to cirA prevents translation initiation, which correlates with cirA mRNA instability. In contrast, RyhB pairing to cirA mRNA promotes changes in RNA structure that displace Hfq, thereby allowing efficient translation as well as mRNA stabilization. Because CirA is a receptor for the antibiotic colicin Ia, in addition to acting as an Fur (Ferric Uptake Regulator)‐regulated siderophore transporter, translational activation of cirA mRNA by RyhB promotes colicin sensitivity under conditions of iron starvation. Altogether, these results indicate that Fur and RyhB modulate an unexpected feed‐forward loop mechanism related to iron physiology and colicin sensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号